• Title/Summary/Keyword: Chondrocytes

Search Result 258, Processing Time 0.023 seconds

Chondrocyte Culture from Epiphyseal Plate and its Morphological Changes in Autologous Implants of Rabbit (토끼 성장판 연골세포 배양과 자가 이식편에서의 형태학적인 변화)

  • 양영철;정해일;최장석
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.408-421
    • /
    • 2000
  • We tried to establish the culture method of the chondrocyte isolated from the epiphyseal cartilage and to investigate morphological changes of chondrocyte cultured with enzyme-digested costal cartilage, the perichondrium and experimentally damaged meniscus of rabbit. De novo chondrocyte pellets were prepared from epiphyseal plates by culturing isolated epiphyseal chondrocytes from 4 week. old rabbits. We morphologically assessed the cartilage formation of the chondrocyte culture with enzyme-digested costal carilage, the perichondrial culture, the cultured chondrocytes transplants into experimentally damaged meniscus of rabbits, the perichondrial culture, the cultured chondrocytes transplants into experimentally damaged meniscus of rabbit. In the 24 days, the epiphyseal chondrocytes maintained the typical phenotypes of the partial nodular cell formation. The 30 days cryopreserved chondrocytes showed abnormal and irregular shape. In the type II collagen added culture, the chondrocytes showed expanded rough endoplasmic reticulum and small and large round-like vesicles of processes. In the type IV collagen added culture, the chondrocytes showed large perinuclear vaculoes and abundant well-developed rough endoplasmic reticulum of processes. In the culture with enzyme- digested costal cartilage and the perichondrial culture, the chondrocytes showed a few swelling rough endoplasmic reticulum and vacuoles. The cultured epiphyseal chondrocytes maintained typical phenotype and the chondrocytes were grown faster and maintained more typical phenotype in the type II and IV collagen added culture. The transformed chondrocytes secreted abundant extracellular matrix in the type II collagen added culture, and showed processes in the type IV collagen added culture. The perichondrial chondrocytes were grown faster and their implants were able to transplant. The cultured chondrocytes transplanted into experimentally damaged meniscus were adapted between the meniscus tissues. And the immunocyto-chemical reaction of the type II collagen of the chondrocytes were found to be maintained. The chondrocytes cultured cartilage. The chondrocytes secreted abundantly. The cultured chondrocytes transplanted into experimentally damaged meniscus changed immature cells into enlarged mature cells with extracellular secretion.

  • PDF

Use of Neonatal Chondrocytes for Cartilage Tissue Engineering

  • KANG SUN WOONG;PARK JUNG HO;KIM BYUNG SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.259-264
    • /
    • 2005
  • Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/ safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosarninoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes

  • Lee, Won Kil;Kang, Jin Seok
    • Toxicological Research
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2016
  • This study was conducted to examine the cellular regulatory mechanisms of sulfasalazine (SSZ) in rabbit articular chondrocytes treated with sodium nitroprusside (SNP). Cell phenotype was determined, and the MTT assay, Western blot analysis and immunofluorescence staining of type II collagen was performed in control, SNP-treated and SNP plus SSZ ($50{\sim}200{\mu}g/mL$) rabbit articular chondrocytes. Cellular proliferation was decreased significantly in the SNP-treated group compared with that in the control (p < 0.01). SSZ treatment clearly increased the SNP-reduced proliferation levels in a concentration-dependent manner (p < 0.01). SNP treatment induced significant dedifferentiation and inflammation compared with control chondrocytes (p < 0.01). Type II collagen expression levels increased in a concentration-dependent manner in response to SSZ treatment but were unaltered in SNP-treated chondrocytes (p < 0.05 and < 0.01, respectively). Cylooxygenase-2 (COX-2) expression increased in a concentration-dependent manner in response to SSZ treatment but was unaltered in SNP-treated chondrocytes (p < 0.05). Immunofluorescence staining showed that SSZ treatment increased type II collagen expression compared with that in SNP-treated chondrocytes. Furthermore, phosphorylated extracellular regulated kinase (pERK) expression levels were decreased significantly in the SNP-treated group compared with those in control chondrocytes (p < 0.01). Expression levels of pERK increased in a concentration-dependent manner by SSZ but were unaltered in SNP-treated chondrocytes. pp38 kinase expression levels increased in a concentration-dependent manner by SSZ but were unaltered in control chondrocytes (p < 0.01). In summary, SSZ significantly inhibited nitric oxide-induced cell death and dedifferentiation, and regulated extracellular regulated kinases 1 and 2 and p38 kinase in rabbit articular chondrocytes.

The Effect of Placenta Extract on Proliferation and Differentiation of Human Chondrocytes (태반추출물이 인간 연골세포의 증식과 분화에 미치는 영향)

  • Huh, Jun;Suh, Man Soo;Park, Sae Jung;Lim, Yeung Kook;Shin, Jun Ho;Chung, Ho Yun;Cho, Byung Chae;Park, Jae Woo
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.616-620
    • /
    • 2006
  • Purpose: The isolated human chondrocytes for cartilage reconstruction and transplantation presents a major problem as these cells would change biologically in vitro. For more effective applications of these cells in the clinical field, it is necessary to get a large amount of cells in a short period without affecting their function and phenotype. Methods: This study reports the effects of placenta extract on chondrocytes in vitro. We initiated this study on the basis of the hypothesis that placenta extract can influence both the proliferation of chondrocytes and their biologic functions(for example, to express cell specific gene or to produce their own extracellular matrix). Chondrocytes in monolayer culture with or without placenta extract were collected and analyzed by MTT assay, ECM assay, and RT-PCR. Results: Placenta extract stimulated the proliferation of chondrocytes in monolayer culture. The phenotype of chondrocytes was well maintained during the expansion in monolayers. Chondrocytes expanded in the presence of placenta extract produced ECM, glycosaminoglycan, abundantly. Compared to chondrocyte expanded in culture medium only, chondrocytes expanded with placenta extract demonstrated higher COL2A1 expression that was biochemically comparable to primary chondrocytes. This study provides an evidence that placenta extract is helpful to expand chondrocytes during tissue cultivation, to maintain their differentiated phenotype and to promote their function. Conclusion: These results suggest that placenta extract during cultivation play an important role in controlling cell behaviors. Furthermore, these results provide a biologic basis for cartilage tissue engineering.

Redifferentiation of Dedifferentiated Chondrocytes on Chitosan Membranes and Involvement of PKCα and P38 MAP Kinase

  • Lee, Yoon Ae;Kang, Shin-Sung;Baek, Suk-Hwan;Jung, Jae-Chang;Jin, Eun Jung;Tak, Eun Nam;Sonn, Jong Kyung
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • To investigate the effects of chitosan on the redifferentiation of dedifferentiated chondrocytes, we used chondrocytes obtained from a micromass culture system. Micromass cultures of chick wing bud mesenchymal cells yielded differentiated chondrocytes, but these dedifferentiated during serial monolayer subculture. When the dedifferentiated chondrocytes were cultured on chitosan membranes they regained the phenotype of differentiated chondrocytes. Expression of protein kinase $C{\alpha}$ ($PKC{\alpha}$) increased during chondrogenesis, decreased during dedifferentiation, and increased again during redifferentiation. Treatment of the cultures with phorbol 12-myristate 13-acetate (PMA) inhibited redifferentiation and down-regulated $PKC{\alpha}$. In addition, the expression of p38 mitogen-activated protein (MAP) kinase increased during redifferentiation, and its inhibition suppressed redifferentiation. These findings establish a culture system for producing chondrocytes, point to a new role of chitosan in the redifferentiation of dedifferentiated chondrocytes, and show that $PKC{\alpha}$ and p38 MAP kinase activities are required for chondrocyte redifferentiation in this model system.

Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes

  • Eo, Seong-Hui;Cho, Hongsik;Kim, Song-Ja
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.364-370
    • /
    • 2013
  • Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha ($I{\kappa}B-{\alpha}$) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-${\kappa}B$) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-${\kappa}B$ pathway in articular chondrocytes.

Lysophosphatidic Acid Inhibits Nitric Oxide-induced Apoptosis via p70S6kinase Pathway in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.349-353
    • /
    • 2009
  • Lysophosphatidic Acid (LPA) is a bioactive lysophospholipid that is a potent signaling molecule able to provoke a variety of cellular responses in many cell types such as differentiation, inflammation and apoptosis. In this study, we have investigated the effect of LPA on Nitric oxide (NO)-induced apoptosis in rabbit articular chondrocytes. LPA dramatically reduced NO induced apoptosis of chondrocytes determined by phase contrast microscope and MTT assay. When chondrocytes alone treated with LPA, LPA induced phosphorylation of p70S6kinase, a serine/threonine kinase that acts downstream of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphoinositide-dependent kinase-1 (PDK-1) in the PI3 kinase pathway, dose-dependently detected by Western blot analysis. Phosphorylation of p70S6k with LPA was reduced expression of p53 in NO-induced apoptosis of chondrocytes. Also, inhibition of p70S6kinase with rapamycin was enhanced expression of p53 in chondrocytes. Our findings collectively suggest that LPA regulates NO induced apoptosis through p70S6kinase pathway in rabbit articular chondrocytes.

  • PDF

Ectopic Expression of Caveolin-1 Induces COX-2 Expression in Rabbit Articular Chondrocytes via MAP Kinase Pathway

  • Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.123-127
    • /
    • 2006
  • Background: Caveolin-1 is a principal component of caveolae membranes in vivo. Although expression of caveolae structure and expression of caveolin family, caveolin-1, -2 and -3, was known in chondrocytes, the functional role of caveolae and caveolins in chondrocytes remains unknown. In this study, we investigated the role of caveolin-1 in articular chondrocytes. Methods: Rabbit articular chondrocytes were prepared from cartilage slices of 2-week-old New Zealand white rabbits by enzymatic digestion. Caveolin-1 cDNA was transfected to articular chondrocytes using LipofectaminePLUS. The cyclooxygenase-2 (COX-2) expression levels were determined by immunoblot analysis, immunostaining, immunohistochemistry, and prostaglandin $E_2\;(PGE_2)$ assay was used to measure the COX-2 activity. Results: Ectopic expression of caveolin-1 induced COX-2 expression and activity, as indicated by immunoblot analysis and $PGE_2$ assay. And also, overexpression of caveolin-1 stimulated activation of p38 kinase and ERK-1/-2. Inhibition of p38 kinase and ERK-1/-2 with SB203580 and PD98059, respectively, led to a dose-dependent decrease COX-2 expression and $PGE_2$ production in caveolin-1-transfected cells. Conclusion: Taken together, our data suggest that ectopic expression of caveolin-1 contributes to the expression and activity of COX-2 in articular chondrocytes through MAP kinase pathway.

Regeneration of a Cartilage Tissue by In Vitro Culture of Chondrocytes on PLGA Microspheres

  • Son, Jeong-Hwa;Park, So-Ra;Kim, Hyeon-Joo;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1577-1582
    • /
    • 2006
  • Cartilage tissue engineering has emerged as an alternative approach for reconstruction or repair of injured cartilage tissues. In this study, rabbit chondrocytes were cultured in a three-dimensional environment to fabricate a new cartilaginous tissue with the application of tissue engineering strategies based on biodegradable PLGA microspheres. Chondrocytes were seeded on PLGA microspheres and cultured on a rocking platform for 5 weeks. The PLGA microspheres provided more surface area to adhere chondrocytes compared with PLGA sponge scaffolds. The novel system facilitated uniform distribution of the cells on the whole of the PLGA microspheres, thus forming a new cartilaginous construct at 4 weeks of culture. The histological and immunohistochemical analyses verified that the number of chondrocytes and the amount of extracellular matrix components such as proteoglycans and type II collagen were significantly greater on the PLGA microspheres constructs as compared with those on the PLGA sponge scaffolds. Therefore, PLGA microspheres enhanced the function of chondrocytes compared with PLGA sponge scaffolds, and thus might be useful for formation of cartilage tissue in vitro.

Oxysterol 25-hydroxycholesterol as a metabolic pathophysiological factors of osteoarthritis induces apoptosis in primary rat chondrocytes

  • Seo, Yo-Seob;Cho, In-A;Kim, Tae-Hyeon;You, Jae-Seek;Oh, Ji-Su;Lee, Gyeong-Je;Kim, Do Kyung;Kim, Jae-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2020
  • The aim of the present study was to investigate the pathophysiological etiology of osteoarthritis that is mediated by the apoptosis of chondrocytes exposed to 25-hydroxycholesterol (25-HC), an oxysterol synthesized by the expression of cholesterol-25-hydroxylase (CH25H) under inflammatory conditions. Interleukin-1β induced the apoptosis of chondrocytes in a dose- dependent manner. Furthermore, the production of 25-HC increased in the chondrocytes treated with interleukin-1β through the expression of CH25H. 25-HC decreased the viability of chondrocytes. Chondrocytes with condensed nucleus and apoptotic populations increased by 25-HC. Moreover, the activity and expression of caspase-3 were increased by the death ligand-mediated extrinsic and mitochondria-dependent intrinsic apoptotic pathways in the chondrocytes treated with 25-HC. Finally, 25-HC induced not only caspase-dependent apoptosis, but also induced proteoglycan loss in articular cartilage ex vivo cultured rat knee joints. These data indicate that 25-HC may act as a metabolic pathophysiological factor in osteoarthritis that is mediated by progressive chondrocyte death in the articular cartilage with inflammatory condition.