• Title/Summary/Keyword: Complex hyperbolic quadric

Search Result 4, Processing Time 0.018 seconds

Cyclic Structure Jacobi Semi-symmetric Real Hypersurfaces in the Complex Hyperbolic Quadric

  • Imsoon Jeong;Young Jin Suh
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.287-311
    • /
    • 2023
  • In this paper, we introduce the notion of cyclic structure Jacobi semi-symmetric real hypersurfaces in the complex hyperbolic quadric Qm* = SO02,m/SO2SOm. We give a classifiction of when real hypersurfaces in the complex hyperbolic quadric Qm* having 𝔄-principal or 𝔄-isotropic unit normal vector fields have cyclic structure Jacobi semi-symmetric tensor.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric

  • Jeong, Imsoon;Kim, Gyu Jong
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.551-570
    • /
    • 2020
  • We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes 𝕬-principal or 𝕬-isotropic. Then in each case, we give a complete classification of real hypersurfaces in Qm∗ = SOom,2/SOmSO2 with Lie invariant normal Jacobi operators.

Real Hypersurfaces in the Complex Hyperbolic Quadric with Killing Shape Operator

  • Jeong, Imsoon;Suh, Young Jin
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.683-699
    • /
    • 2017
  • We introduce the notion of Killing shape operator for real hypersurfaces in the complex hyperbolic quadric $Q^{m*}=SO_{m,2}/SO_mSO_2$. The Killing shape operator implies that the unit normal vector field N becomes A-principal or A-isotropic. Then according to each case, we give a complete classification of real hypersurfaces in $Q^{m*}=SO_{m,2}/SO_mSO_2$ with Killing shape operator.