• Title/Summary/Keyword: Coolant heater

Search Result 37, Processing Time 0.019 seconds

Design Alterations of a Leak Machine Structure for the Improved Leak Quality of Coolant Heater (Coolant Heater의 기밀성 품질 향상을 위한 Leak Test Machine 구조 개선)

  • Han, Dae Seong;Nam, Kyu Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.14-18
    • /
    • 2021
  • Electric Vehicle industry requires high technologies to stabilize apparatuses for the Coolant heater manufacturing. Vibrations of Leak Machine are one of the most critical factors for causing delivered of the defective product or poor inspection, which are the main reasons of the defects. In this study, the structure of the Leak Machine was analyzed through the experiment and the computer simulation to investigate the main reasons of the vibrations, and further to alter the design for the improved stability. And that design alterations were applied to the machine to identify the effects of those alterations. The result of the study shows that design alterations of the Leak Machine can effectively suppress about 97.8% of the vibrations, and further can improving the Inspection precision of the Coolant heater.

A Study on Thermal Conduction Analysis for Optimization of Temperature of Coolant Heater (냉각수 가열장치의 온도 최적화를 위한 열전도 해석에 관한 연구)

  • Han, Dae Seong;Bae, Gyu Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.33-38
    • /
    • 2022
  • This study investigates the outlet temperature of coolant heater based on heat and flow volume conditions. Through computer simulation, the coolant temperature at the outlet was analyzed to investigate the heat and flow volume conditions of the coolant heater, and the optimal conditions were derived. Results show that heat and flow volume conditions, it was confirmed that heat condition is 0.424 W/mm3, and flow volume condition is 500 l/h, demonstrates optimal conditions. The results of this study can be utilized to efficiently control the coolant temperature through various heat and flow volume conditions.

Stability Design of a Coolant Heater based on Fastening Conditions (냉각수 가열장치의 체결 조건에 따른 안정화 설계)

  • Han, Dae-Seong;Yoon, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • The vehicle industry requires superior technology that can increase the efficiency of the battery of an electric vehicle. A coolant heater that can optimize the temperature of the battery is one of the most effective techniques for cold environments. However, the vibrations generated by this device can cause major complications, such as leakage and system errors. Therefore, the vibrations of the device must be suppressed to improve the stability. In this study, the fastening conditions of a coolant heater were analyzed using a computer simulation to investigate the natural frequencies and mode shapes which reflect the primary reasons for the largest vibrations under the given operating conditions. The results showed that six-bolted joints could considerably improve the stability of the fastening device

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

Optimal Design of Flow Path to Improve Stability on Coolant Heater (냉각수 가열장치의 안정화를 위한 유로 최적 설계)

  • Han, Dae Seong;Bae, Gyu Hyun;Yoon, Hyun Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.134-140
    • /
    • 2021
  • This study investigates the flow efficiency and temperature based on flow path shape. Five models are designed to the no flow path, one flow path, two flow path, three flow path, add inlet flow path and add interior space gradient. Results show that two flow model(add inlet flow path and add interior space gradient), It was confirmed that model(add inlet flow path) is the optimal shape for coolant heat transfer, and model(add interior space gradient) is the optimal shape for coolant flow, demonstrates optimal design among the five models. The results of this study can be utilized to efficiently control the coolant flow through various types of flow paths.

A Study on the Coolant leaks Prevention Design of Heaters for Combat Vehicles (전투차량용 온수히터 냉각수 누수방지 설계에 관한 연구)

  • Park, Dong Min;Kwak, Daehwan;Jang, Jongwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.379-385
    • /
    • 2020
  • This paper presents a design for preventing coolant leaks in the core part of a heater mounted in a combat vehicle. The heater is a device that makes heated coolant flow through the heater core in the crew room. A problem with coolant leaks in the heater core area during the operation of a combat vehicle was identified. This problem is caused mainly by high pressure at the junction of the tank and tube due to the vulnerability of this area. To solve this problem, an improved core was made by improving the welding method and changing the end region of the heater core to a structure that can withstand high pressure. When pressure was applied sequentially to the existing core and improved core, a leak occurred at 7.0 kgf/㎠ in the existing core while the improved core maintained its structure up to 17.0 kgf/㎠, highlighting the improvement. Finally, performance tests and environment tests were conducted to demonstrate the suitability of the improved structure. The improved heater will be applied to combat vehicles. This paper is expected to serve as a reference for improving defense capabilities by securing reliability as well as the design and analysis of failures of similar equipment.nse capabilities through securing reliability as well as the design and analysis of failures of similar equipment.

Performance Evaluation of a $CO_2$ Heat Pump System for Fuel Cell Vehicles (연료전지 자동차용 이산화탄소 열펌프 시스템의 성능평가)

  • Kim, Sung-Chul;Park, Jong-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The global warming potential (GWP) of $CO_2$ refrigerant is 1/1300 times lower than that of R134a. Furthermore, the size and weight of the automotive heat pump system can decrease because $CO_2$ operates at high pressure with significantly higher discharge temperature and larger temperature change. The presented $CO_2$ heat pump system was designed for both cooling and heating in fuel cell vehicles. In this study, the performance characteristics of the heat pump system were analyzed for heating, and results for performance were provided for operating conditions when using recovered heat from the stack coolant. The performance of the heat pump system with heater core was compared with that of the conventional heating system with heater core and that of the heat pump system without heater core, and thus the heat pump system with heater core showed the best performance among the selected heating systems. On the other hand, the heating performance of two different types of coolant/air heat pump systems with heater core was compared each other at various coolant inlet temperatures. Furthermore, to use exhausted thermal energy through the radiator, experiments were carried out by changing the arrangement of a radiator and an outdoor evaporator, and quantified the heating effectiveness.

Numerical Investigation on the Urea Melting Characteristics with Coolant and Electric Heaters (냉각수 및 전기 가열 방식에 따른 요소수 해동 특성에 관한 수치해석 연구)

  • Lee, Seung Yeop;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • A Urea-SCR(Selective Catalytic Reactor) system, which converts nitrogen oxides into nitrogen and water in the presence of a reducing agent, creates a major exhaust gas aftertreatment system for NOx reduction among other compounds. With regard to vehicle applications, a urea solution was chosen based on its eutectic composition of a 32.5wt% urea-water solution. An important advantage of this eutectic composition is that its melting point of $-11.7^{\circ}C$ is sufficiently low to avoid solidification in cold environments. However, the storage tanks must be heated separately in case of low ambient temperature levels to ensure a sufficient amount of liquid is available during scheduled start ups. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to understand the melting processes and heat transfer characteristics including liquid volume fraction, temperature distributions, and temperature profiles. The investigations were performed using Fluent 6.3 commercial software that modeled coolant and electric heater models based on a urea solution. It is shown that the melting performance with the electric heater is higher than a coolant heater and is more efficient.

Combustion characteristics of the heater for the vehicle (디젤을 이용한 차량용 히터의 연소특성)

  • Lee, Sang-Seok;Lee, Jin-Seok;Lee, Do-Hyung;Suk, Kyung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.253-256
    • /
    • 2006
  • Most heater being used in vehicles has been used to a cabin heating by being supplied from a heat loss of the engine coolant for heat source efficiency. Recently, the heat loss is reduced by high efficiency in the engine. It becomes to require the combustion heater that directly bums the heater used in vehicles to provide heat source of the heater. The purpose of this study is to research a burner which will applicate combustion heater by the numerical analysis. There are the 5 different types of burners, which is designed by differently each design of the swirler. N-DODECANE by used the burner fuel is performed by numerical analysis in every 5 burner. The burner's efficiency testing is evaluated on the basis of the Exhaust gas temperature.

  • PDF

Reduction Characteristics of Pool Top Radiation Level in HANARO (하나로 수조 방사선 준위의 저감 특성)

  • Park, Yong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.