• Title/Summary/Keyword: Cooling system for vehicle

Search Result 175, Processing Time 0.033 seconds

A Study on Prediction Method of Vehicle Cooling Performance with A/C Condenser (A/C 콘덴서를 포함한 차량냉각 성능예측에 관한 연구)

  • 이상호;박정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.51-60
    • /
    • 2002
  • An analysis method to predict performance of a vehicle cooling system which is composed of radiator, A/C condenser, cooling fan, and etc. is suggested. Air flow through the heat exchanger system and heat rejection rate which dominate the cooling performance are analyzed. Heat transfer with A/C refrigerant phase change is also considered in the analysis. Some predicted results are compared with experimental data for various operating conditions. This evaluation procedure will be useful for the design of optimal vehicle cooling system.

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

The Study of Comparison of Cooling System for H2 Discharge Station (수소충전용 직접 및 간접 냉각시스템 비교 평가 연구)

  • LEE, HYENCHAN;YI, JONGYEOL;BAE, CHANHYO;HEO, JEONGHO;JEON, JAEYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.163-169
    • /
    • 2019
  • This study is a research to compare efficiency of new cooling system (chiller, pre-cooler) to that of the conventional system at the hydrogen refueling station (HRS). This study includes contents for thermodynamic comparison of cooling system for HRS and comparison of pros and cons of its components. So It is to establish design concept of cooling system of HRS supplying with fuel cell electric vehicle (FCEV). HRS is charging high pressure H2 (700 bar) to FCEV. However cooling system is need to prevent temperature rise in tank. This cooling system consists of pre-cooler and chiller system.

Design of Hall Sensor based Electronic Engine Cooling System (홀 센서 기반 전자식 엔진냉각제어 시스템 설계)

  • Koh, Young-Ho;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2017
  • The engine cooling system is a device that maintains the temperature in the engine room at an appropriate level by driving a cooling fan when the temperature in the engine room generated during the vehicle operation occurs over a certain temperature. In recent years, the vehicle cooling system has changed to an electronic system. Therefore, in this paper, we design and develop a hall sensor based electronic engine cooling system. In this paper, a hall sensor module and an actuator module for engine cooling control system are designed. In order to verify the performance of the designed module, the magnetic field control was verified through the simulation of the diameter and the head of the coil.

Thermal Analysis of a Battery Cooling System with Aluminum Cooling Plates for Hybrid Electric Vehicles and Electric Vehicles (알루미늄 냉각 판을 이용한 하이브리드/전기차용 배터리 냉각시스템의 수치적 연구)

  • Baek, Seungki;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The battery cells in lithium-ion battery pack assembled with high-capacity and high-power pouch cells, are commonly cooled with thin aluminum cooling plates in contact with the cells. For HEV/EV lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. Thin aluminum cooling plates are cooled by cold plate with coolant flow paths. In this study, the effect of the battery cooling system design including aluminum cooling plate thickness and various position of cold plate on the cooling performance are investigated by using finite element methods (FEM). Optimal cooling plate and cold plate design are proposed for improving the uniformity in temperature distributions as well as lowering average temperature for the cells with large capacities based on the simulation results.

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

Thermal Flow Analysis of Vehicle Engine Cooling System

  • Park, Kyoung-Suk;Won, Jong-Phil;Heo, Hyung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.975-985
    • /
    • 2002
  • This paper deals with theoretical model developed for analyzing the heat transfer of automotive cooling systems. The model has a modular structure which links various cooling system submodels. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through the cylinder wall in engine cylinder was analysed by using an engine cycle simulation program. In this paper, details of each submodel are described together with the overall structure of the vehicle model.

A Study on the Thermal Characteristics of Cooling System for Securing Battery Stability in Electric Vehicle (전기자동차 배터리 안정성 확보를 위한 냉각장치 열특성 연구)

  • Otgonpurev, Tuul;Ko, Gwang Soo;Park, Youn Cheol
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.2
    • /
    • pp.7-12
    • /
    • 2020
  • The battery of an electric vehicle is a key part of the energy supply to operate the vehicles. There are many factors affecting battery life such as charging method, discharge rate, and ambient temperature those are requires systematic monitoring and management. To solve the issues like environmental problems and fuel consumption reduction the battery needs more performance improvement. In this study, it was analyzed the thermal characteristics and securing battery stability for electric vehicle battery cooling system. The simulation test was operated using GT-suite software with several conditions like cooling capacity 1, 2 and 4 kW, cooling flow rate 5, 10, 20 and 30 LPM, and battery initial temperatures 40, 35, and 30℃ at the temperature of ambient 25℃. The results shown that the case of cooling flow rate at 20 LPM was most efficient among all above conditions.

A Study on Refrigeration Performance of Vehicle HVAC System for Sub-Cooling Improvement (서브쿨링향상을 위한 차량공조 시스템의 냉방성능에 관한 연구)

  • 박만재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The general method which changes sub-cooling of refrigerant is to control the expansion valve in the state of mixing with liquid and gas phase. In this study, the performance of vehicle air conditioning system is to control either changing the expansion valve or adding the sub condenser. Therefore, this research finally is tested in case of the fourth test procedure, the second test was suitable for a valve opening area due to adjusting valve slope in comparison with the other test. The other test except for the second test happened to do liquid back due to the excessively liquified refrigerant into the system. In conclusion, the second test was appeared not to be influenced upon liquid back, and it is to expect positive performance by controlling an expansion valve. Therefore, it will be also useful to research for an increase of compressor efficiency Performance improvement of an air conditioner is to reinforce the suction performance of the evaporator and increase the sub-cooling, which make use of the sub-cooling system.

A Study on the Heat Balance of Cooling System for Armored Vehicles (밀폐형 차량 냉각시스템에 대한 열평형 연구)

  • Kim, S.K.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.70-75
    • /
    • 2007
  • Heat transfer coefficient and fin efficiency of a heat exchanger dispersed in the microelement of control volume were predicted with various flow patterns, conditions and material properties. A computational program was developed by using the method of efficiency-NTU(Number of transfer unit). The modelling was applied to heat exchangers, also was integrated in power pack cooling system in an armored vehicle. The compatibility and the generality were proved by comparing the prediction values with the test results. The developed program may be useful for the design of the cooling system in an armored vehicle.

  • PDF