• Title/Summary/Keyword: Cortex cinnamomi extract

Search Result 29, Processing Time 0.026 seconds

Plasma Cholesterol-Lowering Effects of Cinnamomi cortex Extract as an Inhibitor of Pancreatic Cholesterol Esterase (췌장 콜레스테롤 에스터레이즈 저해제로서의 계피 추출물레 혈중 콜레스테롤 농도에 미치는 영향)

  • 김희숙;최종원;허영미;류성호;서판길
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.106-112
    • /
    • 2002
  • Ethanol extract of Cinnamomi cortex inhibited potently cholesterol esterase activity in vitro. Chloroform fraction of ethanol extract showed the stronger inhibitory effect than other solvent fractions - ethylacetate fraction, butanol fraction, and aqueous fraction. The chloroform fraction of Cinnamomi cortex was studied as a candidator of plasma cholesterol-lowering material using high cholesterol-fed rats. In high cholesterol-fed rats, the diet with chloroform fraction of 150 mg/kg lowered not only plasma neutral lipids contents 25.1% but also plasma total cholesterol level 49.6% than only high cholesterol diet. Plasma HDL-cholesterol level in Cinnamomi cortex chloroform fraction-fed rats was recovered as those level of normal rats. LD$_{50}$ of Cinnamomi chloroform extract was calculated as 1,300 mg/kg.

Quantitative Analysis of Bioactive Marker Compounds from Cinnamomi Ramulus and Cinnamomi Cortex by HPLC-UV

  • Jeong, Su Yang;Zhao, Bing Tian;Moon, Dong Cheul;Kang, Jong Seong;Lee, Je Hyun;Min, Byung Sun;Son, Jong Keun;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • In this study, quantitative and pattern recognition analysis for the quality evaluation of Cinnamomi Ramulus and Cinnamomi Cortex using HPLC/UV was developed. For quantitative analysis, three major bioactive compounds were determined. The separation conditions employed for HPLC/UV were optimized using an ODS $C_{18}$ column ($250{\times}4.6$ mm, 5 ${\mu}m$) with gradient conditions of acetonitrile and water as the mobile phase, at a flow rate of 1.0 mL/min and a detection wavelength of 265 nm. This method was fully validated with respect to linearity, accuracy, precision, recovery, and robustness. The HPLC/UV method was applied successfully to the quantification of three major compounds in the extract of Cinnamomi Ramulus and Cinnamomi Cortex. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of thirty eight Cinnamomi Ramulus and thirty five Cinnamomi Cortex samples. The results indicate that the established HPLC/UV method is suitable for quantitative analysis.

The Antibacterial Component from Cinnamomi Cortex against a Cariogenic Bacterium Streptococcus matans OMZ 176

  • Bae, Ki-Hwan;Ji, Jong-Myung;Park, Kyung-Lae
    • Archives of Pharmacal Research
    • /
    • v.15 no.3
    • /
    • pp.239-241
    • /
    • 1992
  • The methanol extract of Cinnamoni Cortex showed antibacterial action against cariogenic bacterium, Streptococcus mutans OMZ 176. The active principle of the extract was identified to be trans-cinnamaldehyde, which was bactericidal in the minimal inhibitory concentration (MIC) of $100\;\mu$g/ml against the strain. From the results of antibacterial activity of cinnamaldehyde and its derivatives, the acrolein group in the cinnamaldehyde was elucidated to be an essential element for the activity.

  • PDF

Synergistic Growth Inhibition of Herbal Plant Extract Combinations against Candida albicans

  • Jeemin YOON;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • Many skin diseases are caused by microbial infections. Representative pathogenic fungus and bacterium that cause skin diseases are Candida albicans and Staphylococcus aureus, respectively. Malassezia pachydermatis is a fungus that causes animal skin diseases. In this study, we propose a method for removing pathogenic microorganisms from the skin using relatively safe edible herbal extracts. Herbal extracts were screened for skin health through the removal of pathogenic microorganisms, and combinations for effective utilization of the screened extracts were identified. In this study, among methanol extracts of 240 edible plants, C. albicans, S. aureus, and M. pachydermatis were killed by extracts of 10 plants: Acori Gramineri Rhizoma, Angelicae Tenuissimae Radix, Cinnamomi Cortex, Cinnamomi Ramulus, Impatientis Semen, Magnoliae Cortex, Moutan Cortex Radicis, Phellodendri Cortex, Scutellariae Radix, and Syzygii Flos. By evaluating the synergistic antifungal activities against C. albicans using all 45 possible combinations of these 10 extracts, five new synergistic antifungal combinations, Acori Gramineri Rhizoma with Magnoliae Cortex extracts, Acori Gramineri Rhizoma with Phellodendri Cortex extracts, Angelicae Tenuissimae Radix with Magnoliae Cortex extracts, Magnoliae Cortex with Phellodendri Cortex extracts, and Phellodendri Cortex with Syzygii Flos extracts, were identified. By utilizing the selected extracts and five combinations with synergistic antifungal effects, this work provides materials and methods to develop new and safe methods for treating candidiasis using natural products.

Isolation of Melanogenesis Inhibitors from Cinnamomi Cortex (계피로부터 멜라닌 생성 억제 성분의 분리)

  • Jung, Hee-Wook;Choi, Ji-Young;Lee, Jong-Gu;Choi, Eun-Hyang;Oh, Joon-Seok;Kim, Dong-Chun;Kim, Jeong-Ah;Park, Seong-Hee;Son, Jong-Keun;Lee, Seung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.382-386
    • /
    • 2007
  • Cinnamomi Cortex (Lauraceae), the dried bark of Cinnamomum cassia BLUME, has been used as traditional Chinese medicine for its stomachic, astringent, carminative, antispasmodic, antibacterial, antifungal properties. Four compounds were isolated from the MeOH extract of Cinnamomi Cortex, and their structures were identified as trans-cinnamic acid (1), ${\beta}-sitosterol$ (2), bis(2-methylheptyl)phthalate (3), coumarin (4) by comparison of their physical and spectral data with those reported in the literature. These compounds were tested melanogenesis inhibitory effect on B-16 mouse melanoma cell lines. Among them, trans-cinnamic acid (1) showed the most potent inhibitory effect on melanogenesis with $IC_{50}$ value of $13{\mu}g/ml$. Arbutin, positive control, exhibited an $IC_{50}$ value of $29{\mu}g/ml$.

Synergistic Antifungal Activity of Magnoliae Cortex and Syzyii Flos against Candida albicans

  • YOON, Jeemin;KIM, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.142-153
    • /
    • 2021
  • Candida albicans is a dermal fungus of the human body that is known to cause oral candidiasis, vaginal candidiasis, and bloodstream infections in immunocompromised people or in certain environmental conditions. As cases of strains resistant to antifungal agents in C. albicans have been reported, studies using plant materials as safe antifungal agents are being actively conducted. In this study, a total of 17 edible plant extracts showed antifungal activity against C. albicans as a result of evaluating a 280-plant extract library using paper disk diffusion method. Among them, the four extracts with the strongest antifungal activity (Cinnamomi Cortex, Cinnamomi Ramulus, Magnoliae Cortex, and Syzygii Flos) were selected and evaluated for synergistic antifungal activity against C. albicans. The combination of Magnoliae Cortex and Syzygii Flos showed a synergistic activity. The antifungal activity was evaluated based on the concentrations of magnolol and eugenol, the respective components of Magnoliae Cortex and Syzygii Flos. Magnolol and eugenol showed synergistic antifungal activities at the concentration ratio of 1:25 - 1:61. The antifungal activity of these two compounds contributes 28 to 48% to the synergistic antifungal activity of the combination of Magnoliae Cortex and Syzygii Flos extract. In this study, we propose that a combination of Magnoliae Cortex and Syzygii Flos can effectively inhibit the growth of C. albicans and that magnolol and eugenol are the responsible inhibitory compounds.

Anti-Obesity and Anti-Diabetic Effects of a Polyherbal Extract Consisting of Coptidis Rhizoma, Salviae Miltiorrhizae Radix, and Cinnamomi Cortex in High Fat Diet-Induced Obesity Mice (고지방식이 유도 비만 마우스에서 황련, 단삼, 육계 복합추출물의 비만 개선 및 당뇨 예방 효과)

  • Jung, Su Min;Kwon, Se Eun;Kang, Seok Yong;Kim, Su Jin;Jung, Hyo Won;Park, Yong-Ki
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • Objectives: We investigated the effects of Clean-DM4 (C-DM4), a polyherbal extract consisting of Coptidis Rhizoma, Salviae Miltiorrhiza Radix, and Cinnamomi Cortex on high fat diet (HFD)-induced obesity and diabetes in mice. Methods: The C57BL/6 mice (6 weeks) were fed a HFD for 8 weeks and then administrated with C-DM4 extract at 500 mg/kg (p.o.) once daily for 4 weeks. The changes of body weights, calorie intakes, and fasting blood glucose (FBG) levels were measured in mice. The serum levels of glucose, insulin, total cholesterol, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured in mice by enzyme-based assay. It was also observed the histological changes of pancreas, liver, and fat tissues with hematoxylin and eosin (H&E) staining. Results: The increase of calorie intakes and FBG levels in HFD-induced obesity mice was significantly decreased by oral administration of C-DM4 extract. C-DM4 extract administration was significantly reduced the increased levels of glucose, insulin, total cholesterol, AST, and ALT in obesity mice. In addition, C-DM4 extract inhibited lipid droplet accumulation in liver tissues of obesity mice, hyperplasia of pancreatic islets, and enlargement of adipocytes in adipose tissues. Conclusions: Our study indicates that C-DM4 extract could help improve obesity and to prevent diabetes progression.

Purification and properties of an antifungal component, AF-001, from Cinnamomi Cortex (계피로부터 항진균물질 AF-001의 분리.정제 및 특성)

  • Bang, Kyu-Ho;Lee, Young-Ha;Min, Byung-Sun
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.348-353
    • /
    • 1997
  • Ether extract of Cinnamomi Cortex showing antifungal activity was purified and characterized. The active component from the extract was identified to be trans-cinnamaldehyde, which was effective in inhibiting the growth of the representative fungi of dermatomycosis with minimum inhibitory concentration of $39{\sim}78\;{\mu}g/ml$. The antifungal spectrum of trans-cinnamaldehyde was broader than that of commercial antifungal agent, Ketoconazole.

  • PDF

Inhibitory effect of Cinnamomi Cortex extract on motility of prostate cancer cells through reducing YAP activity (육계의 전립선암세포에서 YAP 활성 억제를 통한 전이 저해 효능 연구)

  • Jung, Hyo Won;Kim, Ok-Hyeon;Wang, Tsu Yu;Kim, Seong Eun;Park, Yong-Ki;Lee, Hyun Jung
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.55-61
    • /
    • 2019
  • Objectives : Recently, natural bioactive components catch a major attention for their potent anticarcinogenic activity. In this study, the inhibitory effect of Cinnamomi Cortex (CC) was examined in PC3 prostate cancer cells. Methods : The toxicity of CC extract was evaluated with cell viability and cell morphology. The activity of Yes associated protein (YAP) was tested with qRT-PCR for the target gene expression such as CTGF and AMOTL2. Western blotting was performed for the evaluation of phospho-YAP level. For cell motility analysis, cellular motility was imaged by live imaging system for 6 hr. Successive images were used for the generation of movie file. Using this movie file, cellular migration was manually tracked and analyzed using time-lapse microscope and Fiji software. Results : Cytotoxicity of CC extract was not detected at $500{\mu}g/m{\ell}$ or below concentration. Although $500{\mu}g/m{\ell}$ of CC extract reduced CTGF and AMOTL2 gene expression as YAP target genes, it was not statistically significant (CTGF expression P=0.0605, AMOTL2 expression P=0.4478). However, phosphorylated YAP was highly enhanced by CC extract treatment, when normalized with total YAP protein expression, suggesting YAP activation was inhibited. Finally prostate cancer cell motility was markedly reduced by $500{\mu}g/m{\ell}$ of CC extract. Conclusions : CC extract suppresses cancer cell motility and migration ability through inhibiting YAP activation without prostate cancer cell death, suggesting that this herb might be effective therapeutic drug for prostate cancer metastasis.

Antiobesity and Antidiabetic Effects of Polyherbal Extract with Atractylodis Rhizoma, Anemarrhenae Rhizoma, Cinnamomi Cortex, and Moutan Radicles Cortex in High Fat Diet-induced Obesity Mice (고지방식이 유도 비만 마우스에서 창출, 지모, 육계, 목단피 혼합추출물의 항비만 및 항당뇨 효능 연구)

  • Jung, Su Min;Seol, Young Hyun;Chun, Ka Yoon;Park, Min Ha;Liu, Yi;Kang, Seok Yong;Park, Yong-Ki;Jung, Hyo Won
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • Objectives: In this study, we investigated the antiobesity and antidiabetic effects of polyherbal extract, DM2 consisting of Atractylodis Rhizoma, Anemarrhenae Rhizoma, Cinnamomi Cortex, and Moutan Radicles Cortex in high fat diet-induced obesity mice. Methods: DM2 extract was prepared with a hot water. Six-week-old male C57BL/6N mice were fed a high-fat diet (HFD) for 8 weeks and then administrated with DM2 extract (500 mg/kg, p.o.) for 4 weeks. The changes of physiological markers, body weight (BW), food and water intakes, and the levels of fasting blood glucose (FBG) were measured once a week for 4 weeks in mice. The the serum levels of glucose, insulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (T-CHO), triglyceride, and low density lipoprotein cholesterol in sera were measured in mice using autometic chemical analyzer and enzyme linked immunosorbant assay. We also observed the histological changes of liver and pancreatic tissues with Hematoxylin & Eosin staining. Results: In physiological change, the increases of BW, calorie intake, and FBG in HFD-induced obese mice were significantly decreased after administration of DM2 extract for 4 weeks. The decrease of water intake was significantly increased in DM2 extract-administrated mice. In serological change, the administration of DM2 extract in obesity mice was significantly decreased the serum levels of glucose, insulin, T-CHO, AST, and ALT levels. We also found that DM2 extract inhibited the increase of lipid droplets in liver and the structural destruction of pancreatic tissues in obesity mice. Conclusion: Our study demonstrated that DM2 extract has antiobesity antidiabetic effects with body weight loss, decrease of glucose and insulin levels, and lipid accumulation on liver tissue.