• Title/Summary/Keyword: Critical buckling stress

Search Result 134, Processing Time 0.035 seconds

The study of bending and buckling behavior of sandwich structure according to design parameter variation (설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구)

  • 한근조;안성찬;안성찬;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF

Study of reinforcement effect of sandwich plate structure according to core shape (샌드위치형 판 구조물의 코어형상에 따른 보강효과에 관한 연구)

  • 한근조;안성찬;심재준;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.740-743
    • /
    • 2001
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the sandwich structure which has honeycomb core type. We are concerned about its buckling and bending stress with respect to its side length, thickness and the height ratio of its unit core. After obtaining the buckling critical load of unit core, we applied it to the sandwich structure to observe the bending behavior. When we compared the buckling with bending stress under buckling critical load, we observed that models of which length ratio of unit honeycomb core, A, is lower than 0.04 and the thickness of core, t, is thicker than 0.09 mm, is subjected to the ultimate stress by bending before buckling.

  • PDF

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Critical Buckling Loads of Laminated Composites under Cylindrical Bending (원통형 굽힘을 받는 적층판의 임계좌굴 하중)

  • Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF

The Effect of the Area Ratio and Change of Location on the Buckling Stress of Two Rectangular Plates Spot-welded (면적비와 위치변화가 점용접된 두 사각평판의 좌굴응력에 미치는 영향)

  • Han, Geun-Jo;An, Seong-Chan;Sim, Jae-Jun;Lee, Hyeon-Cheol;Jang, Hwal-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.54-59
    • /
    • 2001
  • The stability of a thin plate structure is very crucial problem which results buckling. Because the buckling strength of thin plates is lower than the yield strength of the material, reinforcement plate must be used to increase the buckling strength. And, in this case, spot welding is commonly used, however, the spot welded joints are practically designed by experimental decisions, so it is Inefficient and has the risks of buckling demolition. In this study, two parameters, such as the area ratio and the distance ratio of spot welding which have influence on the buckling strength, should be chosen. Under compressive and shearing load, the effect of two parameters on the critical stress is discussed.

  • PDF

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

Buckling Analysis of Two Isotropic Layers Bonded to a Semi-Infinite Substrate (반무한체에 접합된 두 등방성 층의 좌굴 해석)

  • Jeong, Gyeong-Mun;Beom, Hyeon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2108-2114
    • /
    • 2000
  • The buckling of two elastic layers bonded to a semi-infinite substrate under a transverse compressive plane strain is investigated. Incremental deformation theory, which considers the effect of the initial stress on the incremental stress field, is employed to describe the buckling behavior of both two isotropic layers and the semi-infinite substrate. The problem is converted to an eigenvalue-eigenvector case, from which the critical buckling strain and the buckling wavelength are obtained. The results are presented on the effects of the layer geometries and material properties on the buckling behavior.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Bending Buckling Analysis of Circular Cylindrical Shell based on LOVE Type Solution (LOVE이론에 근거한 원통형쉘의 휨좌굴해석)

  • 김성도;하지명;이시형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.53-60
    • /
    • 1999
  • The bending buckling behavior of circular cylindrical shell is studied. The classical analysis by Love type solution and the package program LUSAS for the structural analysis are used to estimate the critical stresses of circular cylindrical shells under axial compression and bending loads. In this paper, the Love type of buckling equation is carefully investigated and numerical results are presented for a wide range of radius-to-thickness (R/t) ratios and length-to-radius (L/R) ratios. These results show that the maximum critical bending stress is about 30~80% greater than the critical compressive stress

  • PDF