• Title/Summary/Keyword: Cultivated Wild Ginseng

Search Result 127, Processing Time 0.03 seconds

A study on the comparison of antioxidant effects among wild ginseng, cultivated wild ginseng, and cultivated ginseng extracts (자연산 산삼, 산양삼 및 인삼의 항산화능 비교연구)

  • Jang, Hae-Young;Park, Hee-Soo;Kwon, Ki-Rok;Rhim, Tae-Jin
    • Journal of Pharmacopuncture
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 2008
  • Objective: The objective of this study was to compare the antioxidant effects among wild ginseng, cultivated wild ginseng, and ginseng extracts. Methods: In vitro antioxidant activities were examined by total antioxidant capacity (TAC), oxygen radical scavenging capacity(ORAC), total phenolic content, 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, inhibition of induced lipid peroxidation using liver mitochondria, reactive oxygen species(ROS) scavenging effect using 2', 7'-dichlorofluorescein(DCF) fluorescence. Results: 1. TAC of 1.5 and 3.75 mg extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 2. ORAC of 2, 10, and $20{\mu}g$ extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 3. Total phenolic content of 0.375, 0.938, and 1.875 mg extracts was highest in cultivated wild ginseng, followed by wild ginseng and lowest in ginseng. 4. DPPH(1, 1 -Diphenyl-2-picrylhydrazyl) scavenging activity between wild ginseng and cultivated wild ginseng did not differ significantly (p>0.05). 5. Induced lipid peroxidation, measured by TBARS concentration in solution containing rat liver mitochondria incubated in the presence of $FeSO_4$/ascorbic acid was inhibited as amounts of wild ginseng, cultivated wild ginseng, and ginseng extracts increased. TBARS concentration of ginseng extracts were significantly (p<0.05) higher than wild ginseng or cultivated wild ginseng extracts. 6. DCF fluorescence intensity was decreased as concentrations of wild ginseng, cultivated wild ginseng, and ginseng extracts increased, demonstrating that ROS generation was inhibited in a concentrationdependent manner. Conclusions: In summary, the results of this study demonstrate that cultivated wild ginseng extracts had similar antioxidant activities to wild ginseng extracts and greater that of cultivated ginseng extracts.

Component analysis of cultivated ginseng, cultivated wild ginseng, and wild ginseng and the change of ginsenoside components in the process of red ginseng (인삼.산양삼.자연산 산삼의 ginsenoside 함량 분석 및 홍삼화 후의 변화 관찰)

  • Jeong, H.S.;Lim, C.S.;Cha, B.C.;Choi, S.H.;Kwon, K.R.
    • Journal of Pharmacopuncture
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2010
  • Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, cultivated wild ginseng, and wild ginseng through component analysis, and to know the change of ginsenoside components in the process for making red ginseng. Methods: Comparative analysis of ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, Re, Rf, $Rg_1,\;Rg_3,\;Rh_1$ and $Rh_2$ from the cultivated ginseng 4 and 6 years, cultivated wild ginseng, and wild ginseng were conducted using High Performance Liquid Chromatography(hereafter HPLC). And the same analyses were conducted in the process of red ginseng. Results: 1. For content comparison of ginsenoside $Rb_1$, Rc, Rd, Rf, $Rg_1$ and $Rh_1$, wild ginseng showed high content, followed cultivated ginseng 4 and 6 years, cultivated wild ginseng showed low content than any other samples. 2. For content comparison of ginsenoside $Rb_2$ and Re, cultivated ginseng 4 years showed high content, followed wild ginseng and cultivated ginseng 6 years, cultivated wild ginseng showed low content than any other samples. 3. For content comparison of ginsenoside $Rg_3$, wild ginseng and cultivated wild ginseng were only showed low content. 4. For content comparison of ginsenoside $Rh_2$, cultivated wild ginseng was only showed low content. 5. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, $Rg_3$ and $Rh_1$ were increased, and ginsenoside Re and $Rg_1$ were decreased in cultivated wild ginseng. 6. In the process of red ginseng, ginsenoside $Rg_3$ and $Rh_1$ were increased, and ginsenoside $Rb_2$, Rc, and Re were decreased in cultivated ginseng 4 years. 7. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rf and $Rh_1$ were increased, and ginsenoside Rc and Rd were decreased in cultivated ginseng 6 years. Conclusions: Distribution of ginsenoside contents to the cultivated ginseng, cultivated wild ginseng, and wild ginseng was similar and was not showed special characteristics between samples. And the change of ginsenoside to the process of red ginseng, cultivated ginseng and cultivated wild ginseng were showed different aspect.

A study on the comparison of antioxidant effects among cultivated ginseng, and cultivated wild ginseng extracts -Using the measurement of superoxide and hydroxy radical scavenging activities- (인삼 및 산양삼의 항산화 효능 비교 -Superoxide radical과 Hydroxy radical 소거활성을 중심으로-)

  • Rhim, Tae-Jin;Jeong, Hee-Sun;Kim, Young-Jin;Kim, Doo-Young;Han, Young-Ju;Kwon, Hae-Yon;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.12 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • Objectives : The objective of this study was to compare the antioxidant effects among cultivated wild ginseng and ginseng extracts. Methods : In vitro antioxidant activities were examined by superoxide and hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts. Results : 1. In the superoxide radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 0.25 and $0.50mg/m{\ell}$. 2. In the hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 1.0, 2.5, and $5.0mg/m{\ell}$. Conclusions : In summary, the results of this study demonstrate that cultivated wild ginseng extracts had higher antioxidant activities to cultivated ginseng.

Proteomic analysis of amino acid metabolism differences between wild and cultivated Panax ginseng

  • Sun, Hang;Liu, Fangbing;Sun, Liwei;Liu, Jianzeng;Wang, Manying;Chen, Xuenan;Xu, Xiaohao;Ma, Rui;Feng, Kai;Jiang, Rui
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • Background: The present study aimed to compare the relative abundance of proteins and amino acid metabolites to explore the mechanisms underlying the difference between wild and cultivated ginseng (Panax ginseng Meyer) at the amino acid level. Methods: Two-dimensional polyacrylamide gel electrophoresis and isobaric tags for relative and absolute quantitation were used to identify the differential abundance of proteins between wild and cultivated ginseng. Total amino acids in wild and cultivated ginseng were compared using an automated amino acid analyzer. The activities of amino acid metabolism-related enzymes and the contents of intermediate metabolites between wild and cultivated ginseng were measured using enzyme-linked immunosorbent assay and spectrophotometric methods. Results: Our results showed that the contents of 14 types of amino acids were higher in wild ginseng compared with cultivated ginseng. The amino acid metabolism-related enzymes and their derivatives, such as glutamate decarboxylase and S-adenosylmethionine, all had high levels of accumulation in wild ginseng. The accumulation of sulfur amino acid synthesis-related proteins, such as methionine synthase, was also higher in wild ginseng. In addition, glycolysis and tricarboxylic acid cycle-related enzymes as well as their intermediates had high levels of accumulation in wild ginseng. Conclusion: This study elucidates the differences in amino acids between wild and cultivated ginseng. These results will provide a reference for further studies on the medicinal functions of wild ginseng.

인삼과 산양삼, 산삼의 HPLC를 이용한 부위별 성분 분석 비교

  • Han, Young-Ju;Kwon, Ki-Rok;Cha, Bae-Chun;Kwon, Oh-Man
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.37-53
    • /
    • 2007
  • Objectives : The aim of this experiments is to provide an objective differentiation of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng through components analysis of different parts of ginseng. Methods : Comparative analyses of ginsenoside-$Rg_3$, ginsenoside-$Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ from the root, stem, and leaves of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng were conducted using HPLC. Results : 1. For content comparison of leaves, ginseng showed highest content of ginsenoside $Rg_1$ than other samples. Natural wild ginseng showed relatively high content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 2. For content comparison of the stem, ginseng and 10 years old Chinese cultivated wild ginseng didn't contain ginsenoside $Rb_1$. Natural wild ginseng showed higher content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 3. For content comparison of the root, ginsenoside $Rh_2$ was found only in 5 and 10 years old Korean cultivated wild ginseng. 4. Distribution of contents by the parts of ginseng was similar in ginseng and Chinese cultivated wild ginseng. Conclusions : Above experiment data can be an important indicator for the identification of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng.

Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region

  • Li, Guisheng;Cui, Yan;Wang, Hongtao;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.326-329
    • /
    • 2017
  • Background: Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. Methods: The mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. Results: An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. Conclusion: An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

Anti-metastatic mechanism of mountain cultivated wild ginseng in human cancer cell line

  • Jang, S.B.;Lim, C.S.;Jang, J.H.;Kwon, K.R.
    • Journal of Pharmacopuncture
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Objective : Ginseng is one of most widely used herbal medicine. Ginseng showed anti-metastasis activities. However, its molecular mechanisms of action are unknown. So we want to report the wild ginseng repress which plays key roles in neoplastic epithelial-mesenchymal transition process. Methods : Treatment of the human colorectal carcinoma LOVO cells and human gastric carcinoma SNU601 cells with the increased concentrations of cultivated wild ginseng extracts resulted in a gradual decrease in the AXIN2 gene expression. Results : Metastasis-suppressor genes, maspin and nm23 was not affected by the treatment of ginseng extracts in LOVO cells. Moreover, the mountain cultivated wild ginseng or mountain wild ginseng are similar in their inhibitory effects on the expression of AXIN2 gene, but are substantially stronger than cultivated ginseng. Conclusion : We described the novel mechanism of wild ginseng-induced anti-metastasis activity by repressing the expression of AXIN2 gene that plays key roles in epithelial-mesenchymal transition process.

The Effect of Cultivated Wild Ginseng Extract on Preadipocyte Proliferation (산양산삼 추출물이 지방세포의 분화에 미치는 영향)

  • Kim, Byoung-Woo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • Objectives The purpose of this study is to investigate the effects of cultivated wild ginseng extract on primary cultured preadipocyte and adipocytes. Methods Diminish preadipocyte proliferation does primary role to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures with using Sprague-Dawley rats and treated with 0.01-1mg/ml cultivated wild ginseng extract. Result At all concentrations, cultivated wild ginseng extract wasn't show the suppress proliferation of preadipocytes significantly and failed to show effects on decomposition of adipocytes except high dosage. Conclusion Based on these findings, cultivated wild ginseng is not a suitable choice for the treatment of localized obesity.

Effects of Cultivated Wild Ginseng Herbal Acupuncture to the serum cytokine on Hepatic Metastatic Model using Colon26-L5 Carcinoma Cells (Colon26-L5 대장암 세포를 이용한 간전이 모델에 산삼약침 처치가 혈중 cytokine에 미치는 영향)

  • Cho, Byung-Jun;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.9 no.1
    • /
    • pp.127-137
    • /
    • 2006
  • Objective : This experiment was conducted to evaluate inhibitory effects against hepatic metastasis by cultivated wild ginseng Herbal Acupuncture. Methods : Colon26-L5 carcinoma cells were injected through hepatic portal vein to induce hepatic metastatic cancer. After treated cultivated wild ginseng Herbal Acupuncture and investigated various kinds of cytokine level using cytokine chip. Results : 1. Mice treated with cultivated wild ginseng Herbal Acupuncture reduced the level of $IL-l{\alpha}$, $IL-{\beta}$, and $TNF-{\alpha}$ compared to the control group. 2. Mice treated with cultivated wild ginseng Herbal Acupuncture was not showed significant change in the level of IL-4, IL-l0, IL-12 and $INF-{\gamma}$ compared to the control group. 3. Observing the level of various kinds of cytokine, cultivated wild ginseng Herbal Acupuncture was suppressed pro-inflammatory cytokine. These findings indicate cultivated wild ginseng Herbal Acupuncture is possible to use the inflammatory disease and futher studies carry out for the explanation of anticancer mechanism.

처치온도에 따른 초미분화 산양삼의 홍삼화 연구

  • Kim, Jin-Ho;Kwon, Ki-Rok;Lee, Eun-Hee;Cha, Bae-Chun
    • Journal of Pharmacopuncture
    • /
    • v.9 no.3 s.21
    • /
    • pp.117-129
    • /
    • 2006
  • Objectives : The aim of this study was to find optimal conditions for producing red ginseng from cultivated wild ginseng using the Turbo Mill. Methods : Characteristics of powdered cultivated wild ginseng based on various temperature settings of the Turbo Mill were observed, and changes in the content was measured by HPLC for various ginsenosides. Results : 1. The diameter of cultivated wild ginseng powder ground by the Turbo Mill was around 10${\mu}m$. 2. As the temperature rose, pressure, Specific Mechanical Energy(SME), and density decreased, whileas Water Solubility Index(WSI) increased. 3. As the temperature rose, super fine powder showed tendency to turn into dark brown. 4. Measuring content changes by HPLC, there was no detection of ginsenoside Rg3 and ginsenosideRg1, Rb1, and Rh2 concentrations decreased with increase in temperature. Conclusions : Super fine powder of cultivated wild ginseng produced by the Turbo Mill promotes easy absorption of effective ingredients by breaking the cell walls. Using this mechanism to produce red ginseng from cultivated wild ginseng, it yielded less than satisfactory results under the current experiment setup. Further researches are needed to verify more suitable condition for the production of red ginseng.