• 제목/요약/키워드: Curcumae longae Radix

검색결과 11건 처리시간 0.024초

울금(鬱金)이 간성상세포의 섬유화 억제에 미치는 영향 (Inhibitory Effect of Curcumae Longae Radix on Fibrogenesis in Hepatic Stellate Cell Line, LX-2)

  • 김세훈;우홍정;김영철;이장훈
    • 대한한방내과학회지
    • /
    • 제30권2호
    • /
    • pp.306-316
    • /
    • 2009
  • Objectives : This study was performed to investigate the anti-fibrogenic effect of Curcumae Longae Radix on human hepatic stellate cells. Materials and Methods: Hepatic stellate cells (LX-2) were treated with various concentrations of Curcumae Longae Radix extract for 24, 48, and 72 hours. It was extracted with distilled water. After the treatment, cell viability, proliferation, cell cycle analysis, procollagen levels and the mRNA of the ASMA, TIMPl, TIMP2, MMP2, collagen type la, PDGF-receptor-beta and TGF-beta were measured by using MTT assay, BrdU assay, RT-PCR, and procollagen type 1 C-peptide EIA kit. Results : The viability of HSCs decreased in the 48 hours group, and proliferation of HSCs decreased as the concentration increased. In the cell cycle analysis, Curcumae Longae Radix decreased the ratio of M phase, and increased the ratio of apoptosis, G0/G1 and S phase. In the RT-PCR, the mRNA expression of the collagen type la and ASMA decreased with the Curcumae Longae Radix treatment. The production of procollagen by the HSCs was decreased by the treatment of Curcumae Longae Radix with high dose. Conclusion : These results suggest that Curcumae Longae Radix is helpful in the treatment of liver fibrosis as well as liver cirrhosis.

  • PDF

울금과 강황의 항산화 및 항염증 활성 비교연구 (Comparative Study of Anti-oxidant and Anti-inflammatory Activities between Curcumae longae Radix and Curcumae longae Rhizoma)

  • 오혜인;박한별;주미선;정선용;오명숙
    • 대한본초학회지
    • /
    • 제25권1호
    • /
    • pp.83-91
    • /
    • 2010
  • Objectives : In this study, we compared the anti-oxidant and anti-inflammatory activities of Curcumae longae Radix (CLRa) and Curcumae longae Rhizoma (CLRh). Methods : We performed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation scavenging assays, and determined total polyphenolic content to examine the anti-oxidant effects of CLRa and CLRh. We also evaluated the anti-oxidant effects of CLRa and CLRh against hydrogen peroxide ($H_2O_2$)-induced toxicity in PC12 cells using thiazolyl blue tetrazolium bromide (MTT) and reactive oxygen species (ROS) assays. Next, to compare the anti-inflammatory effects of CLRa and CLRh against lipopolysaccharide (LPS)-induced inflammation in microglia BV2 cells, we measured nitric oxide (NO) assay and inducible nitrite synthase (iNOS) using Western blotting analysis. Results : CLRa showed higher activity in DPPH and ABTS assays and lower total polyphenolic contents compared with CLRh. In PC12 cells, CLRa and CLRh showed no difference in H2O2-induced cell toxicity and ROS overproduction. In BV2 cells, CLRa showed higher effect than CLRh in NO and iNOS production induced by LPS. Conclusions : These results demonstrate that CLRa has higher radical scavenging activities and anti-inflammatory effect in BV2 cells comparing CLRh. However, CLRa and CLRh have no effect and no difference in $H_2O_2$-induced toxicity.

한인진(韓茵蔯), 울금(鬱金), 산사(山査), 단삼(丹蔘) 발효복합추출물이 RAW264.7 및 HUVEC 세포에서 나타나는 이상지질혈증 관련 염증인자 발현 및 항산화에 미치는 영향 (The Effects of an Extract of Fermented Artemisiae Iwayomogii Herba, Curcumae Longae, Crataegi Fructus and Salviae Miltiorrhizae Radix on Anti-inflammation Associated with Dyslipidemia and Anti-oxidation in RAW264.7 and HUVEC Cells)

  • 이강욱;조현경;유호룡;설인찬;김윤식
    • 대한한방내과학회지
    • /
    • 제39권4호
    • /
    • pp.480-494
    • /
    • 2018
  • Objectives: To investigate the effect of fermented extract of Artemisiae Iwayomogii Herba, Curcumae Longae, Crataegi Fructus and Salviae Miltiorrhizae Radix (FMH) on anti-inflammation associated with dyslipidemia and anti-oxidation in RAW264.7 and HUVEC cells. Methods: The total polyphenols, total flavonoids, DPPH radical scavenging activity, ABTS radical scavenging activity, and cytotoxicity of FMH were measured. RAW264.7 cells treated with FMH were tested for production of NO, and for cytokine and LTB4 levels and HUVEC cells treated with FMH were examined for production of cDNA of genes related to inflammation. Results: 1. FMH contained polyphenols and flavonoids. The DPPH and ABTS radical scavenging activity of FMH increased in a concentration-dependent manner. 2. FMH treatment inhibited the production of nitric oxide (NO), cytokines, and LTB4 in RAW264.7 cell when compared to the untreated control group. 3. FMH decreased the transcription of pro-inflammatory genes, whereas it increased transcription of anti-inflammatory genes, in HUVEC cells. Conclusion: FMH is effective as an antioxidant and for treatment and prevention of dyslipidemia, atherosclerosis, ischemic heart disease, stroke, and other cardiocerebrovascular diseases.

HepG2 cell에서 한인진, 울금, 차전자 추출물(ACP)의 항산화 및 항이상지질혈증 효과 (Antioxidant and Anti-dyslipidemic Effect of Artemisiae iwayomogii Herba, Curcumae longae Radix, and Plantaginis Semen Complex Extract(ACP) on HepG2 Cells)

  • 정은선;조현경;김윤식;유호룡;설인찬
    • 동의생리병리학회지
    • /
    • 제32권1호
    • /
    • pp.13-23
    • /
    • 2018
  • This study was performed to investigate the antioxidant and antidyslipidemic effects of Artemisiae iwayomogii Herba, Curcumae longae Radix and Plantaginis Semen complex extract(ACP) on HepG2 cells. We measured total polyphenols, total flavonoids, radical scavenging activity, and ABTS radical scavenging activity of ACP to evaluate its antioxidant activity. HepG2 cells were treated with ACP. Then, we evaluated ROS production; intracellular GSH content; GPx, GR, SOD, and catalase activities; free fatty acids and MDA levels; and mRNA expression levels of ACAT1 and HMG-CoA reductase. Results: ACP contains polyphenols and flavonoids and increased the DPPH and ABTS radical scavenging activities in HepG2 cells in a dose dependent manner. Also, ACP significantly reduced ROS production in HepG2 cells compared to the control group and significantly increased the GSH content, and elevated the enzyme activities of GPx, GR, and catalase in HepG2 cells compared to the control group. In addition, ACP reduced the mRNA expression of ACAT1 and HMG-CoA reductase in HepG2 cells compared to that in the control group. Conclusion: These results suggest that ACP has an antioxidant effect and may suppress the expression of dyslipidemia - associated genes and thus may be useful for the improvement of dyslipidemia.

Curcumin 유도체 및 대사체가 산화스트레스에 의한 HepG2 세포 독성에 미치는 영향 (Effects of Curcumin Analogues and Metabolite on Oxidative Stress-induced Cytotoxicity in HepG2 Cells)

  • 김기병;이수경;권영달;염승룡;송용선
    • 한방재활의학과학회지
    • /
    • 제20권2호
    • /
    • pp.51-61
    • /
    • 2010
  • Objectives : The purpose of this study was to investigate antioxidant effects of curcumin from Curcumae Longae Radix. Methods : Using HepG2 Iiver-like cells, the antioxidant effects of curcumin, one of main components from Curcumae Longae Radix, and its analogues have been evaluated by measuring their effects on cytotoxicity induced by $H_2O_2$. Results : The pre-incubation for 6 hours with curcumin, bis-demethoxycurcumin, or dimethoxycurcumin protected HepG2 cells from $H_2O_2$-induced toxicity in a dose-dependent manner. However, tetrahydrocurcumin, one of curcumin metabolites, did not protect HepG2 cells from $H_2O_2$-induced toxicity. Interestingly, curcumin, bis-demethoxycurcumin, and dimethoxycurcumin were increased in the protein levels of heme oxygenase-1(HO-1) at concentrations that were also effective in cellular protection. In contrast, tetrahydrocurcumin did not induce HO-1 expression. Tin protoporphyrin-IX, an inhibitor of HO-1 activity, significantly abolished cytoprotection afforded by curcumin, bis-demethoxycurcumin and dimethoxycurcumin. Conclusions : These results demonstrate that curcumin, bis-demethoxycurcumin, and dimethoxycurcumin with two conjugated doble bonds on their structures may reduce $H_2O_2$-induced oxidative stress through HO-1 expression. HO-1 induction may be one of antioxidant pathways by which curcumin protects from oxidative stress-induced cytotoxicity.

국내 유통 한약재의 기원식물에 관한 고찰 (Review on Original Plane of Oriental Medicines Used in Korea)

  • 김관수;김호철
    • 한국작물학회지
    • /
    • 제48권
    • /
    • pp.79-95
    • /
    • 2003
  • To clarify the botanical origins of oriental medicines which have been argued or confused for plant origins, species of original plants were investigated through the textural research for oriental medicines and the comparison of Chinese, Korean, Japanese and North Korean Pharmacopoeia. Twenty oriental medicines were studied; Angelicae Gigantis Radix, Rhei Rhizoma, Atractylodis Rhizoma Alba, Aconiti Lateralis Radix Preparata, Acanthopanacis Cortex, Osterici Radix, Cnidii Rhizoma, Saposhnikovae Radix, Magnoliae Cortex, Paeoniae Radix, Liriopis Tuber, Zanthoxyli Fructus, Achyranthis Radix, Sinomeni Caulis et Rhizoma, Polygonati Rhizoma, Cinnamomi Cortex, Visci Herba et Loranthi Ramulus, Fritillariae Thunbergii Bulbus, Pogostemonis Herba, and Curcumae Longae Radix.

HepG2 cell을 이용한 한인진, 울금, 나복자 복합물(ACR)의 이상지질혈증 관련 유전자 발현 억제 및 항산화 효능 평가 (Inhibition of gene associated with Dyslipidemia and Antioxidative Effect of Artemisia iwayomogi, Curcumae Radix and Raphani Semen(ACR) on HepG2 cell model)

  • 차지윤;유호룡;김윤식;설인찬;조현경
    • 대한한의학회지
    • /
    • 제38권3호
    • /
    • pp.43-58
    • /
    • 2017
  • Objectives: We performed this study to evaluate the antioxidative and hypolipidemic effect of Artemisia iwayomogi (韓茵蔯), Curcuma longa L. (鬱金) and Raphanus sativus L. (蘿?子) (ACR). Method: We enriched Artemisiae Capillaris, Curcumae Longae and Raphani Semen compound with alcohol. ACR extract is treated to HepG2 cell. Cell groups are devided into 3 groups: normal, control and ACR treated group. We measured polyphenol, flavonoids, DPPH and ABTS radical scavenging activity, ROS, glutathione, GSH peroxidase, GSH reductase, SOD, catalase, free fatty acid, lipid peroxidation and suppression of ACAT1 and HMG-CoA reductase expression on mRNA level. Results: 1. ACR contained polyphenol and flavonoids and increased GSH significantly in HepG2 cell. 2. ACR increased GPx, GR, and catalase activity significantly in HepG2 cell. 3. ACR increased DPPH and ABTS radical scavenging activity significantly in HepG2 cell and decreased ROS. 4. ACR decreased free fatty acid and MDA significantly in HepG2 cell. 5. ACR suppressed ACAT1 and HMG-CoA reductase expression on mRNA level in HepG2 cell. Conclusion: This study suggests that ACR has antioxidative and hypolipidemic effect and might be effective in prevention and treatment of dyslipidemia.

臨證指南醫案에 나타난 피부외과 질환에 대한 문헌고찰 (A Literature Study of Dermatosurgical Diseases in the ImJeungJiNamUiAn)

  • 조재훈;채병윤;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제15권2호
    • /
    • pp.271-288
    • /
    • 2002
  • Authors investigated the pathogenesis and treatment of dennatosurgical diseases in the ImJeungJiNamUiAn(臨證指南醫案). 1. The symptoms and diseases of dermatosurgery were as follows; 1) BanSaJinRa(반사진라) : eczema, atopic dermatitis, seborrheic dermatitis, psoriasis, lichen planus, pityriasis rosea, hives, dermographism, angioedema, cholinergic urticaria, urticaria pigmentosa, acne, milium, syringoma, keratosis pilaris, discoid lupus erythematosus, hypersensitivity vasculitis, drug eruption, polymorphic light eruption, rheumatic fever, juvenile rheumatoid arthritis(Still's disease), acute febrile neutrophilic dermatosis(Sweet's syndrome), Paget's disease, folliculitis, viral exanthems, molluscum contagiosum, tinea, tinea versicolor, lymphoma, lymphadenitis, lymphangitis, granuloma annulare, cherry angioma 2) ChangYang(瘡瘍) : acute stage eczema, seborrheic dermatitis, stasis ulcer, intertrigo, xerosis, psoriasis, lichen planus, ichthyosis, pityriasis rosea, rosacea, acne, keratosis pilaris, dyshidrosis, dermatitis herpetiformis, herpes gestationis, bullae in diabetics, pemphigus, lupus erythematosus, fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, toxic shock syndrome, staphylococcal scaled skin syndrome, scarlet fever, folliculitis, impetigo, pyoderma gangrenosum, tinea, candidiasis, scabies, herpes simplex, herpes zoster, chicken pox, Kawasaki syndrome, lipoma, goiter, thyroid nodule, thyroiditis, hyperthyroidism, thyroid cancer, benign breast disorder, breast carcinoma, hepatic abscess, appendicitis, hemorrhoid 3) Yeok(疫) : scarlet fever, chicken pox, measles, rubella, exanthem subitum, erythema infectiosum, Epstein-Barr virus infection, cytomegalovirus infection, hand-foot-mouth disease, Kawasaki disease 4) Han(汗) : hyperhidrosis 2. The pathogenesis and treatment of dermatosurgery were as follows; 1) When the pathogenesis of BalSa(발사), BalJin(發疹), BalLa(발라) and HangJong(項腫) are wind-warm(風溫), exogenous cold with endogenous heat(外寒內熱), wind-damp(風濕), the treatment of evaporation(解表) with Menthae Herba(薄荷), Arctii Fructus(牛蒡子), Forsythiae Fructus(連翹) Mori Cortex(桑白皮), Fritillariae Cirrhosae Bulbus(貝母), Armeniaoae Amarum Semen(杏仁), Ephedrae Herba(麻黃), Cinnamomi Ramulus(桂枝), Curcumae Longae Rhizoma(薑黃), etc can be applied. 2) When the pathogenesis of BuYang(부양), ChangI(瘡痍) and ChangJilGaeSeon(瘡疾疥癬) are wind-heat(風熱), blood fever with wind transformation(血熱風動), wind-damp(風濕), the treatment of wind-dispelling(疏風) with Arctii Fructus(牛蒡子), Schizonepetae Herba(荊芥), Ledebouriellae Radix(防風), Dictamni Radicis Cortex(白鮮皮), Bombyx Batrytioatus(白??), etc can be applied. 3) When the pathogenesis of SaHuHaeSu(사후해수), SaJin(사진), BalJin(發疹), EunJin(은진) and BuYang(부양) are wind-heat(風熱), exogenous cold with endogenous heat(外寒內熱), exogenous warm pathogen with endogenous damp-heat(溫邪外感 濕熱內蘊), warm pathogen's penetration(溫邪內陷), insidious heat's penetration of pericardium(伏熱入包絡), the treatment of Ki-cooling(淸氣) with TongSeongHwan(通聖丸), Praeparatum(豆?), Phyllostachys Folium(竹葉), Mori Cortex(桑白皮), Tetrapanacis Medulla(通草), etc can be applied. 4) When the pathogenesis of JeokBan(적반), BalLa(발라), GuChang(久瘡), GyeolHaek(結核), DamHaek(痰核), Yeong(?), YuJu(流注), Breast Diseases(乳房疾患) and DoHan(盜汗) are stagnancy's injury of Ki and blood(鬱傷氣血), gallbladder fire with stomach damp(膽火胃濕), deficiency of Yin in stomach with Kwolum's check (胃陰虛 厥陰乘), heat's penetration of blood collaterals with disharmony of liver and stomach(熱入血絡 肝胃不和), insidious pathogen in Kwolum(邪伏厥陰), the treatment of mediation(和解) with Prunellae Spica(夏枯草), Chrysanthemi Flos(菊花), Mori Folium (桑葉), Bupleuri Radix(柴胡), Coptidis Rhizoma(黃連), Scutellariae Radix(黃芩), Gardeniae Fructus(梔子), Cyperi Rhizoma(香附子), Toosendan Fructus(川?子), Curcumae Radix(鬱金), Moutan Cortex(牧丹皮), Paeoniae Radix Rubra(赤芍藥), Unoariae Ramulus Et Uncus(釣鉤藤), Cinnamorni Ramulus(桂枝), Paeoniae Radix Alba(白芍藥), Polygoni Multiflori Radix (何首烏), Cannabis Fructus (胡麻子), Ostreae Concha(牡蠣), Zizyphi Spinosae Semen(酸棗仁), Pinelliae Rhizoma(半夏), Poria(백복령). etc can be applied. 5) When the pathogenesis of BanJin(반진), BalLa(발라), ChangI(瘡痍), NamgChang(膿瘡). ChangJilGaeSeon(瘡疾疥癬), ChangYang(瘡瘍), SeoYang(署瘍), NongYang(膿瘍) and GweYang(潰瘍) are wind-damp(風濕), summer heat-damp(暑濕), damp-warm(濕溫), downward flow of damp-heat(濕熱下垂), damp-heat with phlegm transformation(濕熱化痰), gallbladder fire with stomach damp(膽火胃濕), overdose of cold herbs(寒凉之樂 過服), the treatment of damp-resolving(化濕) with Pinelliae Rhizoma(半夏), armeniacae Amarum Semen(杏仁), Arecae Pericarpium(大腹皮), Poria(백복령), Coicis Semen(薏苡仁), Talcum(滑石), Glauberitum(寒水石), Dioscoreae Tokoro Rhizoma(??), Alismatis Rhizoma(澤瀉), Phellodendri Cortex(黃柏), Phaseoli Radiati Semen(?豆皮), Bombycis Excrementum(?沙), Bombyx Batryticatus(白??), Stephaniae Tetrandrae Radix(防己), etc can be applied. 6) When the pathogenesis of ChangPo(瘡泡), hepatic abscess(肝癰) and appendicitis(腸癰) are food poisoning(食物中毒), Ki obstruction & blood stasis in the interior(기비혈어재과), damp-heat stagnation with six Bu organs suspension(濕熱結聚 六腑不通), the treatment of purgation(通下) with DaeHwangMokDanPiTang(大黃牧丹皮湯), Manitis Squama(穿山甲), Curcumae Radix(鬱金), Curcumae Longae Rhizoma(薑黃), Tetrapanacis Medulla(通草), etc can be applied. 7) When the pathogenesis of JeokBan(적반), BanJin(반진), EunJin(은진). BuYang(부양), ChangI(瘡痍), ChangPo(瘡泡), GuChang(久瘡), NongYang(膿瘍), GweYang(潰瘍), Jeong(정), Jeol(癤), YeokRyeo(疫?) and YeokRyeolpDan(疫?入?) are wind-heat stagnation(風熱久未解), blood fever in Yangmyong(陽明血熱), blood fever with transformation(血熱風動), heat's penetration of blood collaterals(熱入血絡). fever in blood(血分有熱), insidious heat in triple energizer(三焦伏熱), pathogen's penetration of pericardium(心包受邪), deficiency of Yong(營虛), epidemic pathogen(感受穢濁), the treatment of Yong & blood-cooling(淸營凉血) with SeoGakJiHwangTang(犀角地黃湯), Scrophulariae Radix(玄參), Salviae Miltiorrhizae Radix(丹參), Angelicae Gigantis Radix(當歸), Polygoni Multiflori Radix(何首烏), Cannabis Fructus(胡麻子), Biotae Semen(柏子仁), Liriopis Tuber(麥門冬), Phaseoli Semen(赤豆皮), Forsythiae Fructus(連翹), SaJin(사진), YangDok(瘍毒) and YeokRyeoIpDan(역려입단) are insidious heat's penetration of pericardium(伏熱入包絡), damp-warm's penetration of blood collaterals(濕溫入血絡), epidemic pathogen's penetration of pericardium(심포감수역려), the treatment of resuscitation(開竅) with JiBoDan(至寶丹), UHwangHwan(牛黃丸), Forsythiae Fructus(連翹), Curcumae Radix(鬱金), Tetrapanacis Medulla(通草), Acori Graminei Rhizoma(石菖蒲), etc can be applied. 9) When the pathogenesis of SaHuSinTong(사후신통), SaHuYeolBuJi(사후열부지), ChangI(瘡痍), YangSon(瘍損) and DoHan(盜汗) are deficiency of Yin in Yangmyong stomach(陽明胃陰虛), deficiency of Yin(陰虛), the treatment of Yin-replenishing(滋陰) with MaekMunDongTang(麥門冬湯), GyeongOkGo(瓊玉膏), Schizandrae Fructus(五味子), Adenophorae Radix(沙參), Lycii Radicis Cortex (地骨皮), Polygonati Odorati Rhizoma(玉竹), Dindrobii Herba(石斛), Paeoniae Radix Alba(白芍藥), Ligustri Lucidi Fructus (女貞子), etc can be applied. 10) When the pathogenesis of RuYang(漏瘍) is endogenous wind in Yang collaterals(陽絡內風), the treatment of endogenous wind-calming(息風) with Mume Fructus(烏梅), Paeoniae Radix Alba (白芍藥), etc be applied. 11) When the pathogenesis of GuChang(久瘡), GweYang(潰瘍), RuYang(漏瘍), ChiChang(痔瘡), JaHan(自汗) and OSimHan(五心汗) are consumption of stomach(胃損), consumption of Ki & blood(氣血耗盡), overexertion of heart vitality(勞傷心神), deficiency of Yong(營虛), deficiency of Wi(衛虛), deficiency of Yang(陽虛), the treatment of Yang-restoring & exhaustion-arresting(回陽固脫) with RijungTang(理中湯), jinMuTang(眞武湯), SaengMaekSaGunjaTang(生脈四君子湯), Astragali Radix (황기), Ledebouriellae Radix(防風), Cinnamomi Ramulus(桂枝), Angelicae Gigantis Radix(當歸), Ostreae Concha(牡蠣), Zanthoxyli Fructus(川椒), Cuscutae Semen(兎絲子), etc can be applied.

  • PDF

한약재의 에스트로겐 유사 활성에 대한 기초 연구 (Basic Study on Estrogen-like Activity of Herbal Medicine)

  • 손보길;이희윤;배주은;윤영진
    • 대한한방부인과학회지
    • /
    • 제31권4호
    • /
    • pp.54-72
    • /
    • 2018
  • Objectives: The aim of this review is to investigate studies on Estrogen-like activity and to contribute to the utilization of herbal medicines including phytoestrogens. Methods: Electric searches were performed with Pubmed from 2013 to June 2018, for the words, 'herb and estrogen', 'traditional Chinese medicine and estrogen', 'Oriental medicine and estrogen', and 'Korean medicine and estrogen'. 49 papers are investigated and classified into 'in vitro', 'in vivo' and 'in vivo and in vitro' experimental studies. Results: 1. In vitro experimental studies have shown that estrogen-like effects of the components extracted from Rhei Radix et Rhizoma, Rubi Fructus, Sparganii Rhizoma, Epimedii Herba, Spatholobi Caulis, Evodiae fructus, Curcumae longae Radix, Ginseng Radix, Bupleuri Radix, Astragali Radix, Salviae Miltiorrhizae Radix, Puerariae Radix, Scutellariae Radix are present. 2. In vivo experimental studies have shown that estrogen-like effects of the components extracted from Phytolaccae Radix, Ligustri Lucidi Fructus, Alismatis Rhizoma, Notoginseng Radix, Puerariae Radix, Ginseng Radix, Cyperi Rhizoma, Cistanchis Herba, Cynomorii Herba, Granati fructus, Astragali Radix, Rehmanniae Radix Crudus, Epimedii Herba, Polygalae Radix, Artemisiae Annuae Herba are present. 3. In vitro and in vivo experimental studies have shown that estrogen-like effects of the components extracted from Cirsii Herba, Dioscoreae Rhizoma, Salviae Miltiorrhizae Radix, Cynomorii Herba, Cinnamomi cortex, Drynariae Rhizoma, Psoraleae Semen, Schisandrae Fructus, Epimedii Herba, Astragali Radix are present. Conclusions: Future studies will require additional research on numerous herbal medicines used in clinical practice.

골연화증(骨軟化症)에 대(對)한 동서의학적(東西醫學的) 문헌고찰(文獻考察) (A Literature Study of The Osteomalacia)

  • 박종혁;황영근;정지천
    • 동국한의학연구소논문집
    • /
    • 제8권1호
    • /
    • pp.159-169
    • /
    • 1999
  • 고령화와 육체적 활동의 감소로 증가 추세에 있는 골연화증(骨軟化症)의 임상치료(臨床治療)에 도움을 얻고자 역대의서(歷代醫書)와 중의서(中醫書), 중의잡지(中醫雜誌)를 중심으로 증상(症狀), 병인(病因), 병리(病理), 치법(治法), 치방(治方) 등을 동서의학적(東西醫學的)으로 고찰하였다. 골연화증(骨軟化症)은 골의 석회화 장애로 골밀도가 감소되는 대사성 골질환으로, 동양의학(東洋醫學)에서는 골위, 골고(骨枯) 등의 골질환(骨疾患)에서 유사한 증상(症狀)이 나타나며, 병인(病因)은 주로 신허(腎虛)로서 서양의학의 신장 질환으로 인한 인(燐)의 재흡수 불량, Vit-D 대사 이상과 유사하다. 증상(症狀)으로는 요통(腰痛), 골통증(骨痛症), 다발성 골절, 동요성 보행 등이 나타난다. 치법(治法)은 보신(補腎)을 위주(爲主)로 하여 건비익신(健脾益腎),자양기혈(滋養氣血), 강장근골(强壯筋骨) 등이 있고, 치방(治方)은 육미지황탕(六味地黃湯)을 위주로 하여, 호잠환(虎潛丸), 제생신기환(濟生腎氣丸), 대보음환(大補陰丸) 등이 활용되고 있으며, 약물(藥物)은 숙지황(熟地黃), 호경골(虎脛骨), 호도육(胡挑肉), 자하차(紫河車), 두충(杜沖), 녹각교(鹿角膠), 녹용(鹿茸) 등의 보신지제(補腎之劑)가 주로 사용되고 있다.

  • PDF