• Title/Summary/Keyword: Deep convolutional neural network

Search Result 941, Processing Time 0.029 seconds

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning (Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현)

  • Jeon, Hee-Kyeong;Lee, Kwang-yeob;Kim, Chi-yong
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.303-306
    • /
    • 2016
  • In this paper, we propose a method to accelerate convolutional neural network by utilizing a GPGPU. Convolutional neural network is a sort of the neural network learning features of images. Convolutional neural network is suitable for the image processing required to learn a lot of data such as images. The convolutional layer of the conventional CNN required a large number of multiplications and it is difficult to operate in the real-time on the embedded environment. In this paper, we reduce the number of multiplications through Winograd convolution operation and perform parallel processing of the convolution by utilizing SIMT-based GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 17%, compared to the conventional convolution.

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.

Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review

  • Musri, Nabilla;Christie, Brenda;Ichwan, Solachuddin Jauhari Arief;Cahyanto, Arief
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.237-242
    • /
    • 2021
  • Purpose: The aim of this study was to analyse and review deep learning convolutional neural networks for detecting and diagnosing early-stage dental caries on periapical radiographs. Materials and Methods: In order to conduct this review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines were followed. Studies published from 2015 to 2021 under the keywords(deep convolutional neural network) AND (caries), (deep learning caries) AND (convolutional neural network) AND (caries) were systematically reviewed. Results: When dental caries is improperly diagnosed, the lesion may eventually invade the enamel, dentin, and pulp tissue, leading to loss of tooth function. Rapid and precise detection and diagnosis are vital for implementing appropriate prevention and treatment of dental caries. Radiography and intraoral images are considered to play a vital role in detecting dental caries; nevertheless, studies have shown that 20% of suspicious areas are mistakenly diagnosed as dental caries using this technique; hence, diagnosis via radiography alone without an objective assessment is inaccurate. Identifying caries with a deep convolutional neural network-based detector enables the operator to distinguish changes in the location and morphological features of dental caries lesions. Deep learning algorithms have broader and more profound layers and are continually being developed, remarkably enhancing their precision in detecting and segmenting objects. Conclusion: Clinical applications of deep learning convolutional neural networks in the dental field have shown significant accuracy in detecting and diagnosing dental caries, and these models hold promise in supporting dental practitioners to improve patient outcomes.

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

Performance Comparison of Convolution Neural Network by Weight Initialization and Parameter Update Method1 (가중치 초기화 및 매개변수 갱신 방법에 따른 컨벌루션 신경망의 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • Deep learning has been used for various processing centered on image recognition. One core algorithms of the deep learning, convolutional neural network is an deep neural network that specialized in image recognition. In this paper, we use a convolutional neural network to classify forest insects and propose an optimization method. Experiments were carried out by combining two weight initialization and six parameter update methods. As a result, the Xavier-SGD method showed the highest performance with an accuracy of 82.53% in the 12 different combinations of experiments. Through this, the latest learning algorithms, which complement the disadvantages of the previous parameter update method, we conclude that it can not lead to higher performance than existing methods in all application environments.

A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification (Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법)

  • Borin, Min;Rah, HyungChul;Yoo, Kwan-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

Visualized Malware Classification Based-on Convolutional Neural Network (Convolutional Neural Network 기반의 악성코드 이미지화를 통한 패밀리 분류)

  • Seok, Seonhee;Kim, Howon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.197-208
    • /
    • 2016
  • In this paper, we propose a method based on a convolutional neural network which is one of the deep neural network. So, we convert a malware code to malware image and train the convolutional neural network. In experiment with classify 9-families, the proposed method records a 96.2%, 98.7% of top-1, 2 error rate. And our model can classify 27 families with 82.9%, 89% of top-1,2 error rate.