• Title/Summary/Keyword: Defibrotide

Search Result 2, Processing Time 0.018 seconds

Effect of Defibrotide on Rat Reflux Esophagitis

  • Kim, Hyoung-Ki;Choi, Soo-Ran;Choi, Sang-Jin;Chio, Myung-Sup;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.319-327
    • /
    • 2004
  • This study was aimed at evaluating the effect of defibrotide on the development of the surgically induced reflux esophagitis, on gastric secretion, lipid peroxidation, polymorphonuclear leukocytes (PMNs) accumulation, polymorphonuclear leukocytes adherence, superoxide anion and hydrogen peroxide production in PMNs, scavenge of hydroxyl radical and hydrogen peroxide, cytokine (interleukin-1 ${\beta}$, tumor necrosis $factor-{\alpha}$) production in blood, and intracelluar calcium mobilization in PMNs. Defibrotide did not inhibit the gastric secretion and not change the gastric pH. Treatment of esophagitis rats with defibrotide inhibited lipid peroxidation, and myeloperoxidase (MPO) in the esophagus in comparison with untreated rats. Defibrotide significantly decreased the PMN adherence to superior mesenteric artery endothelium in a dose-dependent manner, Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)- or $0.1{\mu}g/ml$ N-phorbol 12-myristate 13-acetate (PMA)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged the hydrogen peroxide but did not scavenge the hydroxyl radical. Treatment of esophagitis rats with defibrotide inhibited interleukin-1 ${\beta}$ production in the blood in comparison with untreated rats, but tumor necrosis $factor-{\alpha}$ production was not affected by defibrotide. The fMLP-induced elevation of intracellular calcium in PMNs was inhibited by defibrotide. The results of this study suggest that defibrotide may have partly beneficial protective effects against reflux esophagitis by the inhibition lipid peroxidation, PMNs accumulation, PMNs adherence to endothelium, reactive oxygen species production in PMNs, inflammatory cytokine production(i.e. interleukin-1 ${\beta}$), and intracellular calcium mobilization in PMNs in rats.

Protective Effect of Defibrotide on Splanchnic Injury following Ischemia and Reperfusion in Rats

  • Choi, Soo-Ran;Jeong, Ji-Hoon;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock, characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of defibrotide, a complex of single-stranded polydeoxyribonucleotides having antithrombotic effect, was investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state, resulting in a fatal outcome within 120 min of reperfusion in many rats. Defibrotide (10 mg/kg body weight) 10 min prior to reperfusion significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Defibrotide treatment also significantly attenuated in the increase of plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged hydrogen peroxide, but not hydroxyl radical. Treatment of SAO rats with defibrotide inhibited tumor necrosis factor-${\alpha}$, and interleukin-1${\beta}$ productions in blood in comparison with untreated rats. These results suggest that defibrotide partly provides beneficial effects by preserving endothelial function, attenuating neutrophil accumulation, and antioxidant in the ischemic reperfused splanchnic circulation