• Title/Summary/Keyword: Diethyl-maleate

Search Result 10, Processing Time 0.03 seconds

Characterization of Taurine Transport in Conditionally Immortalized Rat Brain Capillary Endothelial Cell Lines (조건적 불사화 흰쥐 뇌 모세혈관 내피세포주에서 Taurine 수송 특성)

  • 강영숙;이나영
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.99-103
    • /
    • 2002
  • Taurine has a neuroprotective action from oxidative stress in neural cell. In the present study, we studied taurine transport under basal and stressed conditions in conditionally immortalized rat brain capillary endothelial cell line (TR-BBB13) in vitro. The uptake of[$^3{H}$]taurine in the TR-BBB13 was increased by time-dependently and dependent on both Na$^{+}$ and Cl/ sup -/. Furthermore, $\beta$-alanine strongly inhibited the uptake of [TEX>$^3{H}$]taurine in the TR-BBB13. To study the effcts of oxidative stress on taurine transport, we used diethyl maleate (DEM) and lipopolysccharide (LPS). Diethyl maleate (DEM, $300\Mu\textrm{M}$) significantly reduced uptake of [TEX>$^3{H}$]taurine by time-dependently until 8 hr exposure in TR-BBB 13. But, the [TEX>$^3{H}$]taurine uptake was not changed by lipopolysccharide (LPS, 10 ng/ml) in TR-BBB13.3.

AMPLIFICATION OF MERCURY TOXICITY BY GLUTATHIONE DEPLETION IN V79 CELLS

  • Yisook Nam;Chung, An-Sik
    • Toxicological Research
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 1993
  • The treatmene of V79 cells with diethyl maleate (DEM) led to decrease in glutathione (GSH) level as increasing DEM concentration. Mercuric chloride, treated for 6 hrs with 2ng/ml, affected the GSH metabolizing enzymes glutathione S-transferase (GST) and glutathione peroxidase (GSP), dropping their activities to 60% and 75%, respectively, though not so much in GSH level(80%). However, the toxic effects of mercuric chloride on those enzymes and GSH level were both amplified when the Hg2+ treatment was combined with the preceding DEM treatment.

  • PDF

The Effects of diethyl maleate on the N-methyl-N'-nitro-N-nitrosoguanidine induced gastric carcinogenesis in rats (Diethyl maleate가 N-methyl-N'-nitro-N-nitrosoguanidine에 의해서 유발되는 랫드 위암 발생에 미치는 영향에 관한 병리학적 연구)

  • Park, Cheol-bom;Lee, Joon-sup
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.793-807
    • /
    • 1995
  • This study was carried out to investigate the effects of diethyl maleate(DEM) on the carcinogenesis of forestomach and pyloric glandular stomach in rats caused by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG). A total of 60 male 6-week-old Wistar rats were given twice intragastric injection of MMNG(200mg/kg BW), then were given diets containing 5% NaCl for 3 weeks until 4th week of the experiment. And then the animals of groups of 1 and 2 were placed on diets containing 0.2% DEM for 16 weeks until the end of 20 weeks of the experiment. On the other hand, the animals of groups of 3 and 4 were placed on basal diets for the same periods. The tissues of forestomach and liver of each group were frozen in liquid nitrogen and the activities of quinone reductase(QR) were determined by measurement of the dicoumarol-sensitive reduction of dichloro-indophenol by NADPH at 600nm. All rats were sacrificed at the end of 20 weeks of the experiment. Every animal was fasted for 24 hrs prior to sacrifice. The forestomach was fixed in 10% neutral phosphate buffered formalin for histology and the pyloric gland was fixed in sublimated formalin for immunohistochemistry of pepsinogen 1 altered pyloric gland(PAPG). The final body weight of the group given MNNG and treated with 5% NaCI and DEM was significantly decreased compared with that of the group 4(p<0.05). Food and water consumption rates were not significantly changed. The preneoplastic and neoplastic lesions of the forestomach given MNNG and treated with 5% NaCI and DEM were significantly increased compared to those of the group 4(p<0.0l). The incidence of PAPG in the groups treated with 0.2% DEM was significantly increased compared with that of the group 4(group 1:p<0.01, group 2:p<0.05). The activities of QR of forestomach in the groups treated with 0.2% DEM were significanitly increased compared with those of the group 4(p<0.001), but those of liver were not significant. These results indicate that DEM exert the enhancing effect of forestomach and glandular stomach carcinogenesis in rats pretreated with MNNG and NaCl.

  • PDF

Brain-to-blood efflux transport of taurine at the blood-brain barrier in rats

  • Lee, Na-Young;Kang, Young-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.200.1-200.1
    • /
    • 2003
  • The purpose of this study is to examine whether an brain to blood efflux system for taurine is present on the blood-brain barrier (BBB) or not and this efflux transport system is regulated by CNS cell damage with oxidative stress agent such as diethyl maleate (DEM) or tumor necrosis factor-a (TNF-${\alpha}$), by using the brain efflux index (BEI) method. The brain efflux index value is defined as the relative amount of test compound efflux from cerebrum compared with that of a reference compound, [$\^$14/C] carboxyinulin, which has limited BBB permeability. (omitted)

  • PDF

Comparison of Neurotoxicity Induced by Some Glutathione Depletors in Mouse Cortical Cell Cultures

  • Lee, Gee-Woon;Lee, Kuy-Sook;Park, Sah-Hoon;Bae, Choon-Sang;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.177-183
    • /
    • 2000
  • We examined the neurotoxic effects of 3 glutathione (GSH) depletors, buthionine sulfoximine (BSO), diethyl maleate (DEM) and phorone, under the presence of trolox, cycloheximide (CHX), pyrrolidine dithiocarbamate (PDTC) or MK-801 in primary mouse cortical cell cultures. All three depletors induced neuronal death in dose and exposure time dependent manner, and decreased total cellular GSH contents. The patterns of the neuronal death and the GSH decrements were dependent on the individual agents. DEM $(200\;{\mu}M)$ induced rapid and irreversible decrement of the GSH. BSO (1 mM) also decreased the GSH irreversibly but the rate of decrement was more progressive than that of DEM. Phorone (1 mM) reduced the GSH content to 40% by 4 hr exposure, that is comparable to the decrement of BSO, but the GSH recovered and reached over the control value by 36 hr exposure. BSO showed a minimal neurotoxicity $(0{\sim}10%)$ at the end of 24 hr exposure, but marked neuronal cell death at the end of 48 hr exposure. The BSO (1 mM)-induced neurotoxicity was markedly inhibited by trolox or CHX and partially attenuated by MK-801. DEM induced dose-dependent cytotoxicity at the end of 24 hr exposure. Over the doses of $400\;{\mu}M,$ glial toxicity also appeared. DEM $(200\;{\mu}M)-induced$ neurotoxicity was markedly inhibited by trolox or PDTC. Phorone (1 mM) induced moderate neurotoxicity (40%) at the end of 48 hr exposure. Only CHX showed significant inhibitory effect on the phorone-induced neurotoxicity. These results suggest that the GSH depletors induce neuronal injury via different mechanisms and that GSH depletors should be carefully employed in the researches of neuronal oxidative injuries.

  • PDF

Effect of Glutathione on Aldehyde Dehydrogenase Activity (알데히드 탈수소 효소 활성에 미치는 글루타치온의 영향)

  • 이은실;문전옥
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • It is known that alcoholics have significantly lower mitochondrial aldehyde dehydrogenase (ALDH)s'activity than do normal subjects or nonalcoholics with liver disease. However, there are only few reports that explain the reasons behind this reduction of ALDHs'activities. In this study, ALDH activity is inhibited by acetaldehyde, a substrate for ALDH However, the addition of glutathione (GSH) protected ALDH activities against the inhibitory effects of acetaldehyde in vitro. Furthermore, when GSH depletion is induced using diethyl maleate (DEM) in rats by 24% in cytosol and 43% in mitochondria, ALDH activities were also depressed by 31% and 63%, respectively compared to non-treated rats without significant reductions in other hepatic enzymes. These results suggest that ALDHs'activities are closely related to the concentration of acetaldehyde and/or cellular GSH contents . Therefore in alcoholic liver disease, increased productions of acetaldehyde and decreased contents of mitochondrial GSH may involved in the depression of ALDHs'activities.

  • PDF

In vivo evidence for brain-to-blood efflux transport of taurine and regulation of this transport by tumor necrosis factor-$\alpha$ at the blood-brain barrier

  • Lee, Na-Young;Kang, Young-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.69.2-69.2
    • /
    • 2003
  • The purpose of this study is to examine whether the efflux system for taurine from brain to blood is present on the blood-brain barrier (BBB) using the brain efflux index (BEl) method and taurine transport system is regulated by CNS cell damage with oxidative stress agent such as diethyl maleate (DEM) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in vivo. [$^3$H]Taurine was microinjected into parietal cortex area 2 (Par2) of the rat brain, and was eliminated from the brain with efflux transport rate of 1.22 10$\^$-2//min, and the process is saturable with a $K_{m}$ of 43.5 ${\mu}$M. (omitted)

  • PDF

Dispersion Stability of Pigments in Aqueous Solution of Anionic Oligo Type Surfactants(Parts 1)-Dispersion of Phthalocyanine or Carbon Black- (올리고머형 음이온성 계면활성제 수용액에서 안료의 분산성(제1보) - Phthalocyanine이나 Carbon Black의 분산 -)

  • Lee, H.W.;Yun, Y.K.;Park, H.Ch.;Nam, K.D.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • The dispersing behaviors of oligomer-type anionic surfactants, cooligomers of diethyl maleate(CmD-Na) or maleic anhydride (CmM-Na) and $C_4{\sim}C_{16}$ alkyl vinylether, which have a different alkyl chain length of the hydrophobic group or degree of polymerization, were studied on the aqueous suspension of ${\alpha}-$ and ${\beta}-$ copper phthalocyanine and carbon black particles. In case of the side alkyl chain length of $C_4{\sim}C_{10}$ of CmD-Na, the dispersing actions were good in the concentration range of 0.01 to 0.1%. Especially, side alkyl groups played an important role in the orientation adsorption on the surface of pigment particles, and oligomers having smaller degrees of polymerization were more effective in the dispersing action, but did not affect the dispersability of carbon black.

  • PDF

Regulation of Choline Transport by Oxidative Stress at the Blood-Brain Barrier In Vitro Model

  • Kang, Young-Sook;Lee, Hyun-Ae;Lee, Na-Young
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • In the present study, we examined how the transport of choline is regulated at the blood-brain barrier (BBB) under the central nervous system (CNS) cellular damages by oxidative stress using a conditionally immortalized rat brain capillary endothelial cells (TR-BBB), in vitro the BBB model. It was also tested whether the choline uptake is influenced by membrane potential, extracellular pH, protonophore (FCCP) and amiloride in TR-BBB cells. In result, $[^3H]choline$ uptake was inhibited by FCCP and dependent on extracellular pH. The treatment of TR-BBB cells with 20 ng/mL tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$, 10 ng/mL lipopolysaccharide (LPS), 100 ${\mu}M$ diethyl maleate (DEM) and 100 ${\mu}M$ glutamate resulted in 3.0-fold, 2.6-fold, 1.8-fold and 2.0-fold increases of $[^3H]choline$ uptake at the respective peak time, respectively. In contrast, hydrogen peroxide and raffinose did not show any significant effects on choline uptake. In addition, choline efflux was significantly inhibited by $TNF-{\alpha}$, LPS and DEM producing cell damage states. In conclusion, the influx and efflux transport system for choline existed in TR-BBB cell line and this process was affected by several oxidative stress inducing agents.

The Change of Taurine Transport in Variable Stress States through the Inner Blood-Retinal Barrier using In Vitro Model

  • Kang, Young-Sook;Lee, Na-Young;Chung, Yeon-Yee
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • Taurine is the most abundant free amino acid in the retina and transported into retina via taurine transporter (TauT) at the inner blood-retinal barrier (iBRB). In the present study, we investigated whether the taurine transport at the iBRB is regulated by oxidative stress or disease-like state in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB) used as an in vitro model of iBRB. First, [$^3H$]taurine uptake and efflux by TR-iBRB were regulated in the presence of extracellular $Ca^{2+}$. [$^3H$]Taurine uptake was inhibited and efflux was enhanced under $Ca^{2+}$ free condition in the cells. In addition, oxidative stress inducing agents such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$), lipopolysaccharide (LPS), diethyl maleate (DEM) and glutamate increased [$^3H$]taurine uptake and decreased [$^3H$]taurine efflux in TR-iBRB cells. Whereas, 3-morpholinosydnonimine (SIN-1), which is known to NO donor decreased [$^3H$]taurine uptake. Lastly, TR-iBRB cells exposed to high glucose (25 mM) medium and the [$^3H$]taurine uptake was reduced about 20% at the condition. Also, [$^3H$]taurine uptake was decreased by cytochalasin B, which is known to glucose transport inhibitor. In conclusion, taurine transport in TR-iBRB cells is regulated diversely at extracellular $Ca^{2+}$, oxidative stress and hyperglycemic condition. It suggested that taurine would play a role as a retinal protector in diverse disease states.