• 제목/요약/키워드: Direct injection

검색결과 1,006건 처리시간 0.024초

기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법 (Modeling of CNG Direct Injection using Gaseous Sphere Injection Model)

  • 최민기;박성욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine)

  • 노현구
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

대형 CNG기관의 직접분사화에 의한 희박한계확장 (A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine)

  • 박정일;정찬문;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구 (A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine)

  • 이민호;김기호;하종한
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구 (A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel)

  • 이민호;정동수;차경옥
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

직접식 금속 쾌속조형 공정을 이용한 고 냉각 특성 사출 성형 금형 개발에 관한 연구 (Investigation into Development of Injection Mould with High Cooling Characteristics Using Direct Metal RP Technology)

  • 안동규;김현우;김형수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2007
  • The objective of this paper is to investigate into the development of injection mould with high cooling characteristics using a direct metal RP technology. In order to manufacture the injection mould with a high cooling rate, three-dimensional conformal cooling channels have been generated in the mould. DMT process, which is one of direct metal RP technologies, has been utilized to directly manufacture the metallic mould with three-dimensional conformal cooling channels. In order to examine the performance of the designed mould, injection molding tests have been carried out. The results of the experiments have been shown that a cooling time and the injection time of the proposed mould are reduced by the factor of five and two times in comparison with the injection mould with linear cooling channels.

  • PDF

분사압력 1800 bar 실현을 위한 직접 니들구동방식 피에조 인젝터 설계 최적화 연구 (A Study on Optimal Design of Direct Needle-driven Piezo Injector for Accomplishing Injection Pressure of 1800 bar)

  • 한상익;김주환;지형순;고준채;김진수;이진욱
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.121-129
    • /
    • 2016
  • The advantages of the common rail fuel injection system architecture have been recognized since the development of the diesel engine. In common rail systems, a high-pressure pump stores a reservoir of fuel at high pressure up to and above 2000 bar. And solenoid or piezoelectric valves make possible fine electronic control over the fuel injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomization. In this study, the direct needle-driven piezo injector was investigated for accomplishing injection pressure of 1800 bar by optimal design by simplification of component and changing number of springs and plates of DPI. It was found that a direct needle-driven piezo injection system features the prototype DPI for passenger vehicle to operate at 1800 bar of injection pressure.

낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성 (Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition)

  • 전해강;이경환;최명식;박수한
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

가솔린 직분식 인젝터의 분무 및 연소특성에 관한 연구 (A Study on the Spray and Combustion Characteristics of Gasoline Direct Injector)

  • 신민규;박종호;유철호;이내현;최규훈
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.114-122
    • /
    • 1997
  • Nowadays, gasoline direct injection engines are being commercialized by virtue of improvement in control technology of spray, flow, air fuel ratio. The stratified charge type has the advantage of improving lean limit. The homogeneous type has the advantage of reducing engine-out hydrocabon emissions in the first 30 seconds after a cold start, in addition, improving transient air fuel ratio control. The vaporization and mixing if injected fuel with air has to e completed in a short time and the fuel film in cylinder and on piston has to be minimized. So, the flow and injection should be well controlled. This paper surveyed the spray characteristics of gasoline direct injection by using laser equipment and the combustion characteristics of the single cylinder engine using homogeneousas-mixture type gasoline direct injection.

  • PDF