• Title/Summary/Keyword: Emission Wavelength

Search Result 624, Processing Time 0.025 seconds

Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy (이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화)

  • Joo, Yongjoon;Son, Si Hyung;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

Semi-analytical Numerical Analysis of the Core-size and Electric-field Intensity Dependency of the Light Emission Wavelength of CdSe/ZnS Quantum Dots

  • Lee, Honyeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.11-17
    • /
    • 2021
  • I performed a semi-analytical numerical analysis of the effects of core size and electric field intensity on the light emission wavelength of CdSe/ZnS quantum dots (QDs). The analysis used a quantum mechanical approach; I solved the Schrödinger equation describing the electron-hole pairs of QDs. The numerical solutions are described using a basis set composed of the eigenstates of the Schrödinger equation; they are thus equivalent to analytical solutions. This semi-analytical numerical method made it simple and reliable to evaluate the dependency of QD characteristics on the QD core size and electric field intensity. As the QD core diameter changed from 9.9 to 2.5 nm, the light emission wavelength of CdSe core-only QDs varied from 262.9 to 643.8 nm, and that of CdSe/ZnS core/shell QDs from 279.9 to 697.2 nm. On application of an electric field of 8 × 105 V/cm, the emission wavelengths of green-emitting CdSe and CdSe/ZnS QDs increased by 7.7 and 3.8 nm, respectively. This semi-analytical numerical analysis will aid the choice of QD size and material, and promote the development of improved QD light-emitting devices.

Microcavity Effect of Top-emission Organic Light-emitting Diodes Using Aluminum Cathode and Anode

  • Lee, Chang-Jun;Park, Young-Il;Kwon, Jang-Hyuk;Park, Jong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1344-1346
    • /
    • 2005
  • We report microcavity effect of top emission organic light-emitting diodes (OLEDs) by using Al cathode and anode, which are feasible for not only top emission EL and angle dependant effects but facile evaporation process without ion sputtering. The device in case of $Alq_3$ green emission showed largely shifted EL maximum wavelength as 650 nm maximum emission. It was also observed that detection angle causes different EL maximum wavelength and different CIE values in R, G, B color emission. As a result, the green device using $Alq_3$ emission showed 650 nm emission ($0^{\circ}$) to 576 nm emission ($90^{\circ}$) as detection angle changed. We believe that these phenomena can be also explained with microcavity effect which depends on the different length of light path caused by detection angle.

Near Infrared Wavelength Calibration without Telluric OH Lines

  • Nguyen, Ngan N.K.;Pak, Soojong;Kang, Wonseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.223.2-223.2
    • /
    • 2012
  • Grating spectrograph observation in near-infrared bands requires wavelength calibrations. We first need to extract order-strips from the echellogram data using flat images, and then to correct the spatial distortions and wavelength scales of the order strips using calibration arc lamps or the telluric OH emission lines. For very high resolution spectrograph using echelle, however, the arc lamps do not have enough emission lines in the order-strips, so we usually use the OH lines for accurate wavelength calibrations in wavelengths shorter than 2.3 microns. In this poster, we present wavelength calibration methods for longer wavelength bands using the telluric absorption lines in early-type stellar spectra and the telluric atmospheric transmission models. This technique will be applied to the data reduction pipeline for the IGRINS.

  • PDF

Effects of Oxygen and Alkaline Earth Atoms on Emission Wavelength of $Eu^{2+}$-doped Oxide Phosphor: A Computational Chemistry Study

  • Onuma, Hiroaki;Yamashita, Itaru;Serizawa, Kazumi;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.294-297
    • /
    • 2009
  • We computationally investigated the effects of oxygen and alkaline-earth on the emission wavelength of the $Eu^{2+}$-doped oxide phosphor. Using QSPR method, we found that the oxygen and alkaline-earth atom around the Eu atom increase and decrease the emission wavelength, respectively. We also investigated the $Eu^{2+}$-doped sulfide, nitride, and oxynitride phosphors.

  • PDF

Luminescence Wavelength Control of $CaAlSiN_3:Eu^{2+}$ by Ca-replacing: Computational and Experimental Study

  • Onuma, Hiroaki;Suehiro, Takayuki;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Sato, Tsugio;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.290-293
    • /
    • 2009
  • We both theoretically and experimentally investigated the luminescence wavelength control of the $Eu^{2+}$-doped $CaAlSiN_3$ (CASN:$Eu^{2+}$). To modify emission wavelength, Na-doped and Mg-doped CASN:$Eu^{2+}$ (NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$) have been studied. According to quantum chemistry calculation result, we synthesized NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$. NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$ showed shorter emission wavelength than that of CASN:$Eu^{2+}$.

  • PDF

Thickness and Angle Dependent Microcavity Properties in Top-Emission Organic Light-Emitting Diodes (상부 발광 유기 발광 소자에서 두께와 시야각에 따른 마이크로 캐비티 특성)

  • Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.32-35
    • /
    • 2011
  • Top-emission device has a merit of high aperture ratio and narrow emission spectrum compared to that of bottom-emission one. Emission spectra of top-emission organic light-emitting diodes depending on a layer thickness and view angle were analyzed using a theory of microcavity. Device structure was manufactured to be Al (100 nm)/TPD/$Alq_3$/LiF (0.5 nm)/Al (2 nm)/Ag (30 nm). N,N'-diphenyl-N,N'- di (m-tolyl)-benzidine (TPD) and tris (8-hydroxyquinoline) aluminium (Alq3) were used as a hole-transport layer and emission layer, respectively. And a thickness of TPD and Alq3 layer was varied in a range of 40 nm~70 nm and 60 nm~110 nm, respectively. Angle-dependent emission spectrum out of the device was measured with a device fixed on a rotating plate. Since the top-emission device has a property of microcavity, it was observed that the emission spectrum shift to a longer wavelength region as the organic layer thickness increases, and to a shorter wavelength region as the view angle increases. Layer thickness and view-angle dependent emission spectra of the device were analyzed in terms of microcavity theory. A reflectivity of semitransparent cathode and optical path length were deduced.

White Light Emitting Diodes for Illumination

  • Choi, Kyoung-Jae;Park, Joung-Kyn;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1090-1092
    • /
    • 2006
  • There is provided white light illumination system including a radiation source, a first luminescent material having a peak emission wavelength of about 575 to about 620 nm, a second luminescent material having a peak emission wavelength of about 495 to about 550 nm, which is different from the first luminescent material and a third luminescent material having a peak emission wavelength of about 420 to about 480 nm, which is different from the first and second luminescent materials. The LED may be a UV LED and the luminescent materials may be a blend of three phosphors. A human observer perceives the combination of the blue, green and red phosphor emissions as white light.

  • PDF

Detection of 1270 nm Emission from Singlet Oxygen due to Photodynamic Therapy in vitro and in vivo.

  • Hirano, Toru;Kohno, Eiji;Ito, Toshiaki;Okazaki, Shigetoshi;Hirohata, Toru;Niigaki, Minoru;Kageyama, Kazumi;Miyaki, Sueo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.515-517
    • /
    • 2002
  • Photodynamic therapy (PDT) is a cancer treatment modality which utilizes the cytotoxicity of the active singlet oxygen derived from irradiation of a tumor accumulated photosensitizer. As the oxygen in the singlet state radiates an emission of 1270nm wavelength when it decays to the triplet state, detection of the emission helps us to understand the mechanism of PDT or to evaluate photosensitizers. We detected the 1270nm emission from photosensitizers Photofrin and ATX-SI0 in vitro and in vivo by means of high sensitive NIR detectors. We obtained the maximum amount of singlet oxygen at irradiation wavelength of 665-670nm from a HeLa tumor in a nude mouse which is injected with ATX-S10.

  • PDF

Wavelength Calibration Solution of VPH Grating Slitless Spectroscopy Image

  • O, Seong A;Shin, Suhyun;Im, Myungshin;Yoon, Yongmin;Kim, Yongjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2018
  • Spectroscopic observations commonly use a slit or fiber; however, non-slit spectroscopy enables us to observe a larger number of targets in one frame of image. Hence, it has been adopted as an observational mode for observatories like HST and JWST. Slitless spectroscopy requires wavelength calibration solutions in order to distinguish and measure the absorption / emission lines from the spectra with high accuracy. We installed the Volume Phase Holographic (VPH) grating to SQUEAN camera on the McDonald 2.1m telescope and obtained images with spectral resolutions of ~ 100 and 200. In order to derive the wavelength calibration, we measured the distances between the 0th order images and spectral features of various quasars. The distances are converted to wavelengths using the known wavelengths of the emission lines. We tested several different methods of spectral extraction and peak estimation of emission lines. We will present the results for the wavelength calibration and suggest the reliable methods to find the solution.

  • PDF