• Title/Summary/Keyword: Energy transfer mechanism

Search Result 336, Processing Time 0.032 seconds

A Study on the Energy Transfer of YAlO3:Tbx3+ using Decay Curves (YAlO3:Tbx3+에서 발광소멸 곡선을 이용한 에너지 전달에 관한 연구)

  • Kim, Gwang Chul;Choi, Jin Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2015
  • $YAlO_3:Tb{_x}^{3+}$ has been synthesized by a combustion process and the concentration x of Tb was varied from 0.001 and 0.05 mol% per mole of YAlO3. The energy transfer of $^5D_3{\rightarrow}^7F_6$(385nm) and $^5D_4{\rightarrow}^7F_5$(544nm) transitions on the $YAlO_3:Tb{_x}^{3+}$(x =0.001, 0.05) have been investigated by using decay curves. The energy transfer mechanism was explained by Inokuti and Hirayama model. The results of calculation and fitting showed that values of n are 6.11(x=0.01) and 6.13(x=0.005). These indicate that the energy transfer mechanism between $Tb^{3+}$ ions is dipole-dipole interaction.

Development and Evaluation of the Road Energy Harvester According to Piezoelectric Cantilever Structure and Vehicle Load Transfer Mechanism (압전 캔틸레버 구조와 차량하중 전달방법에 따른 도로용 에너지 하베스터의 설계 및 평가)

  • Kim, Chang-Il;Kim, Kyung-Bum;Jeong, Young-Hun;Lee, Young-Jin;Cho, Jeong-Ho;Paik, Jong-Hoo;Kang, In-Seok;Lee, Moo-Yong;Choi, Beom-Jin;Park, Shin-Seo;Cho, Young-Bong;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.773-778
    • /
    • 2012
  • A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 16 piezoelectric cantilevers. We fabricated prototypes using a vehicle load transfer mechanism. Applying a vehicle load transfer mechanism rather than directly installing energy harvesters under roads decreases the area of road construction and allows more energy harvesters to be installed on the side of the road. The power generation amount with respect to the vehicular velocity change was assessed by installing the vehicle load transfer mechanism form and underground form. The energy harvester installed in the underground form generated power of 4.52 mJ at the vehicular velocity of 50 km/h. Also, power generation of the energy harvester installed in the vehicle load transfer mechanism form was 48.65 mJ at the vehicular velocity of 50 km/h.

PX-An Innovative Safety Concept for an Unmanned Reactor

  • Yi, Sung-Jae;Song, Chul-Hwa;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.268-273
    • /
    • 2016
  • An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling (배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.

A Study on the Blue Emitting SrAl12O19: Cex3+, Eu0.012+ Using Time-resolved Photoluminescence (SrAl12O19: Cex3+, Eu0.012+에서 시간분해 Photoluminescence을 이용한 청색발광에 관한 연구)

  • Kim, Gwang Chul;Choi, Jin Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.49-54
    • /
    • 2016
  • $SrAl_{12}O_{19}:Ce_x{^{3+}}$,$Eu_{0.01}{^{2+}}$ phosphors were synthesized through a combustion process and their optical properties were investigated using time-resolved photoluminescence. A PL spectrum showed two dominant peaks which appeared at 300 and 410 nm. It is seen that, as the $Ce^{3+}$ concentration increases, the intensity of 300 nm decreases and the intensity of 410 nm increases. This behavior has been explained by two independent energy transfer mechanism. The first energy transfer occurs from $Ce^{3+}$ ion to $Eu^{3+}$ ion. The second energy transfer takes place from $Ce^{3+}$ ion to $Ce^{3+}-O_{ME}$ complex created in the magnetoplumbite structural host materials. The blue emitting 410 nm peak has been explained by both energy transfer mechanisms.

Dynamic Analysis of a Three-Axis Mechanism for Transfer Robots (3축 이송용 로봇의 동적 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.128-134
    • /
    • 2015
  • This research is that analyze multi-body system that have flexible and rigid body. Transfer robots are widely used mainly in automobile industry owing to its capability to handle heavy parts with high speed in wide range of movement. For the transfer robots to widen the application area, a new three-axis mechanism with heavy payload has been recently developed in consideration of the strength and stiffness. For the purpose, transient dynamic analysis is carried out to find the component position yielding a certain time. Though this research, we can analysis stress distribution and deformation of robot component.

Triplet Excitation Energy Transfer in Choleic Acid Crystals

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2409-2413
    • /
    • 2007
  • Time resolved phosphorescence of Dibromobenzophenone (DBBP) choleic acid crystal was observed at 4.2 K as functions of excitation energy and delay time. The experimental results reveal that the energy transfer efficiency is dependent on the excitation energy, i.e. the density of acceptors sites. As the excitation energy or delay time increases, the resonance phosphorescence does not broaden and shift gradually, rather a broad luminescence band develops about 290 cm?1 to lower energy of the resonance phosphorescence. The observation implies that energy transfer from high to low energy sites in this system is controlled by emission of phonons or vibrons. The data of time resolved experiments were analyzed in terms of a mechanism involving direct donor-acceptor excitation transport by exchange coupling. It was concluded that an isotropic twodimensional exchange interaction topology is consistent with energy transfer in this system.

Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators (집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발)

  • Kim, Yongha;Kim, Seunghee;Hyeon, Seungyeon
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Since the heat is not as fast as the electric power and the loss is relatively large compared to the electric power, it is not realistic to operate the thermal transfer system with on operation center like electric power trading. In the case of the Korea District Heating Corporation, where all the thermal transfer are currently being made, only two or four adjacent heat-generating power plants are being the heat trading. Therefore, In this paper, we concluded that it is appropriate to divide the integrated operation center for heat trading into several regions, to operate the hub integrated operation power plant in each region to reflect the characteristics of the heat medium and proposed the thermal transfer mechanism among integrated energy operators. Then, we have developed an algorithm that can optimize the heat transaction for the proposed mechanism and applied it to the actual operators to verify the usefulness of the proposed algorithm.