• Title/Summary/Keyword: Environmental Temperature

Search Result 9,865, Processing Time 0.036 seconds

A study on the variation of skin temperature on the adult male at environment temperature (각 환경기온하에서의 성인남자 피부온에 관한 연구)

  • 심부자
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.71-88
    • /
    • 1996
  • For understanding skin temperature based on clothing design from a viewpoint of comfortable wearing, the skin temperature, physiological reactions(body temperature, blood pressure and pulse) and physilolgical response(thermal sensation, comfort sensation and perceptive sweaty sensation) were measured on condition tha t5 naked healthy male exposed to serveral environmental temperatures,( $20{\pm}1.0^{\circ}C$ ,$28{\pm}1.0^{\circ}C$ and $32{\pm}1.0^{\circ}C$). As the results of this testing, the regional skin temperature was varied for 90min just after expose to those the environment but was generally stabilized for the nest 90min. It was proved the difference of the regional skin temperature at low temperature environmental($20{\pm}1.0^{\circ}C$) was larger than at high temperature environmental($32{\pm}1.0^{\circ}C$) and inder serveral environmental temperature,the degree of the regional skin was not equal. Except in case of the thigh, the front of all regional skin temperature turned out higher than the back of them. According to change of environmental temperature, body temperature and pulse were altered. In the pshycological response, 'thermal sensation-comfort sensation' was felt to 'slightly warm - comfortable' at $28{\pm}1.0^{\circ}C$of the environmental temperature, and 'perceptive sweaty sensation', wneh it was said 'sweat' at only $32{\pm}1.0^{\circ}C$ of it.

  • PDF

Characteristics of Changes in Air and Road Temperatures Induced by Environmental Conditions in the Urban Region of Seoul Through an Intensive Observing Period (IOP) of Heatwaves in the Summer of 2023 (2023년 여름철 폭염 집중관측을 통한 서울 도심환경 조건에 따른 기온 및 노면 온도의 변화 특성)

  • Sung-Joon Na;Sang-Dae Han;Je-Won Kim;Moon-Su Park;Baek-Jo Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.75-85
    • /
    • 2024
  • An intensive observing period (IOP) of heatwaves in the urban region of Seoul in the summer of 2023 was carried out to understand the changes in air temperature and road temperature induced by environmental conditions. The temperature observed at eight points with different urban environmental conditions was compared with the temperature by the KMA/AWS to analyze the characteristics of change in air temperature by height and the change in road temperature according to environmental conditions and road sprinkler. The comparison of the average temperature observed in different urban environmental conditions with the temperature observed at KMA/AWS showed that the air temperature in asphalt and open space sites was 0.7 to 2.3℃ higher and that the one in bus stops was 0.9 to 2.3℃ higher. In terms of temperature deviations depending on residential type, the temperature in highly populated areas was about 0.1 to 0.8℃ higher than that of apartment complexes. In addition, regardless of the size of a park, the temperature in the park was lower than the temperature in dense housing areas and apartment complexes. In asphalt and residential areas, the road temperature was higher than the temperature at a height of 150 cm, Conversely, road temperature was lower than air temperature in a shaded shelter and large park. In addition, after spraying a surface road, the road temperature immediately dropped by about 3 to 4℃; however, after about 20 minutes, it rose again to the previous road temperature. This change in road temperature appeared only for the temperature of 30 cm height.

A Comparison Study on the Skin Temperature on the Adult Male. Female at Environmental Temperature (각 환경기온하에서의 성인 남 . 여자의 피부온 비교)

  • 심부자
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.227-246
    • /
    • 1997
  • With a view of to providing basic data for designing male's and female's clothes, heslthy males and females(five each) were exposed to three different environmental temperature( $20{\pm}1.0^{\circ}C$ $28{\pm}1.0^{\circ}C$,$32{\pm}1.0^{\circ}C$ in the nude. Their adaptation of skin temperature, physilogical responses, oral temperature, blood pressure, pulse rates) and psychological reactions (thermal, comfort and perceptive sweat sensations) were analyzed to be as follows; The subjects's skin temperature had a similar look of adaptation, but the stability of skin temperature differed at the $20{\pm}1.0^{\circ}C$and at the $28{\pm}1.0^{\circ}C$ Males had higher skin temperatures at three environmental temperatures, but females showed a higher temperature change at the $20{\pm}1.0^{\circ}C$ and$28{\pm}1.0^{\circ}C$ and males at the $32{\pm}1.0^{\circ}C$ Thus females were more resistant to the cold, while male were more resistant to the heat. As environmental temperature increased, oral temperature and pulse rates also grew up. Females turned higher in oral temperature and lower in blood pressure, but both sexes had a normal range of physiological reactions. Even though three environmental temperature were same changes in thermal sensation at and in perceptive sweat sensation at $28{\pm}1.0^{\circ}C$and in perceptive sweat sensation at$32{\pm}1.0^{\circ}C$ the two sexes had the same response in comfort sensation at the three environmental temperature.

  • PDF

A comparision study on the variation of skin temperature on the adult male. female at environmental temperature (각 환경기온하에서의 성인 남녀의 피부온 비교)

  • 심부자
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.39-59
    • /
    • 1997
  • With a view to providing basic data for designing male's and female's clothes, healthy males and females(five each) were exposed to three different environmental temperature($20{\pm}1.0^{\circ}C$, $28{\pm}1.0^{\circ}C$, $32{\pm}1.0^{\circ}C$) in the nude. Their adaptation of skin temperature, physiological responses( rectal temperature, blood pressure, pulse rates) and psychological reactions(thermal, comfort and perceptive sweaty sensations) were analyzed as follows; The subjects's skin temperature had a similar look of adaptation, but the stability of skin temperature differed at tha $20{\pm}1.0^{\circ}C$ and at the $28{\pm}1.0^{\circ}C$ Males had higher skin temperature at three environmental temperatures, but females showed a higher temperature change at the $20{\pm}1.0^{\circ}C$ and $28{\pm}1.0^{\circ}C$ and males at the$32{\pm}1.0^{\circ}C$ Thus females were more resistant to the cold, while males were more resistant to the heat. As environmental temperature increased, rectal temperature and pulse rates also grew up. Females turned higher in rectal temperature and lower in blood pressure, but both sexes had a normal range of physiological reactions. Even though three environmental temperatures were same changes in thermal sensation at $28{\pm}1.0^{\circ}C$and in perceptive sweat sensation at $32{\pm}1.0^{\circ}C$, two sexes had the same response in comfort sensation at the three environmental temperatures.

  • PDF

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

A study on the Tailoring of Environmental Requirements for XKT-1T Aircraft (XKT-1T 항공기 환경 요구사항 적합화 연구)

  • Kim, Jin Seog
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.97-106
    • /
    • 2021
  • The purpose of the study on the tailoring of environmental requirements for KT-1 Export Version(XKT-1T) aircraft is not only based on meeting the compliance of the environmental reliability, customer satisfaction, but also for the expansion of its export. This paper proposes the environmental requirements tailoring processes and High/Low temperature conditions, test procedures, and the results of test profiles for the aircraft. Amongst many existing environmental requirements, the temperature requirements are considered as the most basic and the most important environmental requirements. The High/Low temperature tests are considered and tailored to the high and low temperature methods of MIL-STD-810.

Suitability of Setting Summer Indoor Temperature for Thermal Comfort (여름철 실내 쾌적온도 설정 기준의 적합성)

  • Shim, Huen Sup;Jeong, Woon Seon
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.4
    • /
    • pp.583-589
    • /
    • 2013
  • This study was to provide the information for optimum utilization of the air-conditioning system in the human health and energy saving perspective. Subjects were 17 male and female college students(7 males and 10 females) with normal weight. They wore a short sleeved shirt, knee length trousers, socks, and underwear(0.4clo). They were asked to choose the preferred temperature from different environmental temperatures($28^{\circ}C$, $25^{\circ}C$). The physiological responses were measured and the subjective sensation was voted during the step changes of environmental temperature, starting at $28^{\circ}C$ to $25^{\circ}C$ with $1^{\circ}C$ decrease every 20 minutes. The preferred temperature was $25.9{\pm}0.4^{\circ}C$ for males and $26.9{\pm}0.2^{\circ}C$ for females at $28^{\circ}C$ and $24.8{\pm}0.6^{\circ}C$ for males and $25.6{\pm}0.1^{\circ}C$ for females at $25^{\circ}C$. The preferred temperature decreased about $1.3^{\circ}C$ while the environmental temperature changed $3^{\circ}C$. During the environmental step changes, mean skin temperature decreased more in females while the oxygen uptake and rectal temperature were kept constant for both males and females. We found the preferred temperature was affected by the exposed temperature and the thermal sensation in the condition. Subjects preferred a lower environmental temperature when they were exposed to a lower temperature with cooler sensation. Therefore, in the perspective of human health and energy saving, it is recommended to start setting the air-conditioning temperature higher than the preferred temperature.

Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity (온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용)

  • Jeong, Hyo-Joon;Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

A Study on the GIS for The Sea Environmental Management II (- Developing a Line Density Algorithm for The Quantification to the Sea Surface Temperature Distribution - ) (GIS을 활용한 해양환경관리에 관한 연구 II (해수면 수온분포의 정량화를 위한 선 밀도 알고리즘 개발))

  • Lee, Hyoung-Min;Park, Gi-Hark
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.61-76
    • /
    • 2006
  • A Line Density algorithm was developed to quantify the sea surface temperature distribution using NOAA Sea Surface Temperature(SST) data and Geographic Information Systems(GIS), In addition, a GIS based automation model was designed to extract the Line Density Indices were determined by applying K-means Cluster. SST data in terms of March to May obtained on the coastal area of the Uljin from 2001 to 2004 in spring were used to make two data sets of average sea water temperature map in terms of year as well as month. From the result it was formed that water temperature gradient in April was the strongest among the other months, In particular very strog formation of oceanic front as well as temperature gradients were observed in front of the coastal area around Wonduk and Jukbyeon countries. Because those coastal area is a confront zone of two cold and a warm. It is expected that the development of a Line Density Algorithm would contribute to quantify of the SST for the research of Sea Surface Front(SSF) related to marine life management and the sea environmental conservation.

EFFECT OF ENVIRONMENTAL TEMPERATURE AND FEED INTAKE ON PLASMA CONCENTRATION OF THYROID HORMONES IN DAIRY HEIFERS

  • Purwanto, B.P.;Fujita, M.;Nishibori, M.;Yamamoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.3
    • /
    • pp.293-298
    • /
    • 1991
  • A study was conducted to determine the effect of environmental temperature and level of food intake on plasma concentration of thyroid hormones. Three dairy heifers were used in an experiment which consisted of three levels of chamber temperature (10, 20 and $30^{\circ}C$) and three levels of food intake (100, 75 and 50% of recommended requirements). The analysis showed significant effects of environmental temperature on plasma triiodothyronine concentration, rectal temperature, respiration rate and heart rate but not on heat production. The range of plasma triiodothyronine was 2.51~1.79 ng/ml when the environmental temperature varied from 10 to $30^{\circ}C$. Effects of feed intake level were significant for heart rate and heal production. Heat production decreased from 25.9 to $20.0kJ/kg^{0.75}{\cdot}h$ when the TDN intake decreased from 66.3 to $35.1g/kg^{0.75}{\cdot}d$. There was no interactive effect of environmental temperature and feed intake level. Plasma triiodothyronine concentration decreased under high environmental temperature without any changes in heat production. The effects of environmental temperature and feed intake level on the physiological function of thyroid gland, as indicated by the relative circulating rate of thyroid hormones, were found to be clear.