• 제목/요약/키워드: Epiphytic Lactic Acid Bacteria

검색결과 10건 처리시간 0.029초

Fermentative Quality of Guineagrass Silage by Using Fermented Juice of the Epiphytic Lactic Acid Bacteria (FJLB) as a Silage Additive

  • Bureenok, S.;Namihira, T.;Tamaki, M.;Mizumachi, S.;Kawamoto, Y.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권6호
    • /
    • pp.807-811
    • /
    • 2005
  • This experiment examined the characteristics of fermented juice of epiphytic lactic acid bacteria (FJLB) prepared by the addition of glucose, sucrose and molasses as a fermentation substrate. The effect of FJLB on the fermentative quality and changes in chemical composition during fermentation of guineagrass silage were also investigated. The pH value of the silages treated with FJLB rapidly decreased, and reached to the lowest value within 7 days of start of fermentation, as compared to the control. The number of lactic acid bacteria (LAB) in the treated silages increased for the first 3 days, thereafter the number of LAB declined gradually up to the end of the experiment. Silages treated with FJLB had larger populations of LAB than the control. Ammonia-nitrogen production increased throughout the ensiling period, which in the control and no-sugar added FJLB silages were higher than the other treated silages. Lactic acid levels varied with the time of ensiling and among the silage treatments. For any sugar FJLB treated silages, the lactic acid increased initially, and then slightly reduced to less than 50 g/kg of dry matter until 49 days after ensiling, except the silage treated with glucose added FJLB. Nevertheless, lactic acid content of the control decreased constantly from the beginning of ensiling and was not found after 35 days. Moreover, acetic acid content increased throughout the ensiling period. All the FJLB treated silages had significantly (p<0.05) lower pH and ammonia-nitrogen content, while significantly (p<0.05) higher lactic acid content and V-score value compared with the control. This study confirmed that the applying of FJLB with any sugar substrate improved fermentative quality of silage.

Additive Effects of Green Tea on Fermented Juice of Epiphytic Lactic Acid Bacteria (FJLB) and the Fermentative Quality of Rhodesgrass Silage

  • Burrenok, Smerjai;Tamaki, Masanobu;Kawamoto, Yasuhiro;Nakada, Tadashi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.920-924
    • /
    • 2007
  • Two experiments were carried out on a laboratory scale. The first involved a study of the effect of green tea on characteristics of fermented juice of epiphytic lactic acid bacteria (FJLB). FJLB was treated with 50 g/L of green tea products as follows: new shoot powder (FJLB+N), leaf powder (FJLB+L), commercial powder (FJLB+P), sterilized new shoot powder (FJLB+SN), sterilized leaf powder (FJLB+SL) or sterilized commercial powder (FJLB+SP). FJLB without any additive was also prepared (Untreated FJLB). After incubation, the number of microorganisms in FJLB were studied. Subsequently, these FJLB were applied at 10 ml/kg to chopped rhodesgrass to study their effects on fermentation. Compared with untreated FJLB, the addition of green tea increased (p<0.05) lactic acid bacteria (LAB) and also aerobic bacteria counts in FJLB. At 60 d of ensiling, all the FJLB treated silages were well preserved, pH and butyric acid content were lower (p<0.001) and lactic acid was higher (p<0.001) than that of the control. Lactic acid content was significantly higher (p<0.001) with treated FJLB than with untreated FJLB. FJLB treated with sterilized green tea decreased (p<0.001) the pH and the lactic acid content was higher (p<0.001) than that in the unsterilized green tea silages.

Fermentation Quality of Italian Ryegrass (Lolium multiflorum Lam.) Silages Treated with Encapsulated-glucose, Glucose, Sorbic Acid and Pre-fermented Juices

  • Shao, Tao;Zhanga, L.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1699-1704
    • /
    • 2007
  • This experiment was carried out to evaluate the effects of adding encapsulated-glucose, glucose, sorbic acid or prefermented juice of epiphytic lactic acid bacteria (FJLB) on the fermentation quality and residual mono- and disaccharide composition of Italian ryegrass (Lolium multiflorum Lam) silages. The additive treatments were as follows: (1) control (no addition), (2) encapsulated-glucose addition at 0.5% for glucose, (3) glucose addition at 1%, (4) sorbic acid addition at 0.1%, (5) FJLB addition at a theoretical application rate of $2.67{\times}10^5$ CFU (colony forming unit) $g^{-1}$, on a fresh weight basis of Italian ryegrass. Although control and encapsulated-glucose treatments had higher contents of butyric acid (33.45, 21.50 g $kg^{-1}$ DM) and ammonia-N/Total nitrogen (114.91, 87.01 g $kg^{-1}$) as compared with the other treated silages, the fermentation in all silages was clearly dominated by lactic acid. This was well indicated by the low pH (4.38-3.59), and high lactic acid/acetic acid (4.39-22.97) and lactic acid content (46.85-121.76 g $kg^{-1}$ DM). Encapsulated-0.5% glucose and glucose addition increased lactic acid/acetic acid, and significantly (p<0.05) decreased ammonia-N/total nitrogen, and the contents of butyric acid and total volatile fatty acids (VFAs) as compared with the control. However, there were higher butyric acid and lower residual mono-and di-saccharides on the two treatments as compared with sorbic acid and FJLB addition, and their utilization efficiency of water soluble carbohydrates (WSC) was lower than that of both sorbic acid and FJLB additions. Sorbic acid addition showed the lowest content of ethanol and ammonia-N/total nitrogen, and the highest content of residual fructose and total mono-and disaccharides as well as the higher lactic acid/acetic acid value. Sorbic acid addition decreased the loss of mono-and disaccharides, and inhibited the activity of clostridial and other undesirable bacteria, and greatly increased the utilization efficiency of fermentable substrates by epiphytic LAB. FJLB addition had the lowest pH value and the highest lactic acid content among all additive treatments, with the most intensive lactic acid fermentation occurring in FJLB treated silage. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB addition depressed clostridia or other undesirable bacterial fermentation which decreased the WSC loss and saved the fermentable substrate for lactic acid fermentation.

Evaluation of Fermentation Quality of a Tropical and Temperate Forage Crops Ensiled with Additives of Fermented Juice of Epiphytic Lactic Acid Bacteria (FJLB)

  • Yahaya, M.S.;Goto, M.;Yimiti, W.;Smerjai, B.;Kawamoto, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권7호
    • /
    • pp.942-946
    • /
    • 2004
  • This study aimed to examine the fermentation quality of a tropical Elephant grass (Pennisetum purpuereum) and temperate Italian ryegrass (Lolium multiflorum) forages ensiled additive of fermented juice of epiphytic lactic acid bacteria (LAB) and to determine what factor affects the fermentation characteristics of the crops. In both species cell walls neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents in silages were consistently decreased (p<0.05) with the addition of FJLB at ensiling more then Control treatment. The FJLB additive increased number of LAB (cfu) and lactate concentration in the silages in both species. The Control treatment without additive underwent a clostridial type of fermentation with traces of propionic, iso-butyric, n-butyric acids contents with higher (p<0.01) levels of volatile basic nitrogen (VBN %TN) and had appreciable decreased of nutrient in silages. FJLB treatment improved silage nutritive value with little contents of VBN %TN, ethanol and very small amount of dry matter (DM) and hemicellulose losses (p<0.05) between 2 to 5% and 7 to 3% respectively, in Elephant grass and Italian ryegrass species. The results in this study indicates that while among the factors affecting silage fermentation butyric type of fermentation was more pronounced in tropical elephant grass compared to the temperate Italian ryegrass, FJLB additive revealed a better silage fermentation products in both species.

Fermentative products and bacterial community structure of C4 forage silage in response to epiphytic microbiota from C3 forages

  • Wang, Siran;Shao, Tao;Li, Junfeng;Zhao, Jie;Dong, Zhihao
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1860-1870
    • /
    • 2022
  • Objective: The observation that temperate C3 and tropical C4 forage silages easily produce large amounts of ethanol or acetic acid has puzzled researchers for many years. Hence, this study aimed to assess the effects of epiphytic microbiota from C3 forages (Italian ryegrass and oat) on fermentative products and bacterial community structure in C4 forage (sorghum) silage. Methods: Through microbiota transplantation and γ-ray irradiation sterilization, the irradiated sorghum was treated: i) sterile distilled water (STSG); ii) epiphytic microbiota from sorghum (SGSG); iii) epiphytic microbiota from Italian ryegrass (SGIR); iv) epiphytic microbiota from oat (SGOT). Results: After 60 days, all the treated groups had high lactic acid (>63.0 g/kg dry matter [DM]) contents and low pH values (<3.70), acetic acid (<14.0 g/kg DM) and ammonia nitrogen (<80.0 g/kg total nitrogen) contents. Notably, SGIR (59.8 g/kg DM) and SGOT (77.6 g/kg DM) had significantly (p<0.05) higher ethanol concentrations than SGSG (14.2 g/kg DM) on day 60. After 60 days, Lactobacillus were predominant genus in three treated groups. Higher proportions of Chishuiella (12.9%) and Chryseobacterium (7.33%) were first found in silages. The ethanol contents had a positive correlation (p<0.05) with the abundances of Chishuiella, Acinetobacter, Stenotrophomonas, Chryseobacterium, and Sphingobacterium. Conclusion: The epiphytic bacteria on raw materials played important roles in influencing the silage fermentation products between temperate C3 and tropical C4 forages. The quantity and activity of hetero-fermentative Lactobacillus, Chishuiella, Acinetobacter, Stenotrophomonas, Chryseobacterium, and Sphingobacterium may be the key factors for the higher ethanol contents and DM loss in silages.

Effect of Additives on the Fermentation Quality and Residual Mono- and Disaccharides Compositions of Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Shao, Tao;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1582-1588
    • /
    • 2005
  • This study aimed to evaluate the effects of silage additives on the fermentation qualities and residual mono- and disaccharides composition of silages. Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) were ensiled with glucose, sorbic acid and pre-fermented juice of epiphytic lactic acid bacteria (FJLB) treatments for 30 days. In both species grass silages, although the respective controls had higher contents of butyric acid (20.86, 33.45g $kg^{-1}$ DM) and ammonia-N/total nitrogen (100.07, 114.91 g $kg^{-1}$) as compared with other treated silages in forage oats and Italian ryegrass, the fermentation was clearly dominated by lactic acid bacteria. This was well indicated by the low pH value (4.27, 4.38), and high lactic acid/acetic acid (6.53, 5.58) and lactic acid content (61.67, 46.85 g $kg^{-1}$ DM). Glucose addition increased significantly (p<0.05) lactic acid/acetic acid, and significantly (p<0.05) decreased the values of pH and ammonia-N/total nitrogen, and the contents of butyric acid and volatile fatty acids as compared with control, however, there was a slightly but significantly (p<0.05) higher butyric acid and lower residual mono- and di-saccharides as compared with sorbic acid and FJLB additions. Sorbic acid addition showed the lowest ethanol, acetic acid and ammonia-N/total nitrogen, and highest contents of residual fructose, total mono- and di-saccharides and dry matter as well as high lactic acid/acetic acid and lactic acid content. FJLB addition had the lowest pH value and the highest lactic acid content, the most intensive lactic acid fermentation occurring in FJLB treated silages. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB additions depressed clostridia or other undesirable bacterial fermentation, thus this decreased the water-soluble carbohydrates loss and saved the fermentable substrate for lactic acid fermentation.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권9호
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

Potential Control of Foodborne Pathogenic Bacteria by Pediococcus pentosaceus and Lactobacillus graminis Isolated from Fresh Vegetables

  • Gonzalez-Perez, C.J.;Vargas-Arispuro, I.;Aispuro-Hernandez, E.;Aguilar-Gil, C.L.;Aguirre-Guzman, Y.E.;Castillo, A.;Hernandez-Mendoza, A.;Ayala-Zavala, J.F.;Martinez-Tellez, M.A.
    • 한국미생물·생명공학회지
    • /
    • 제47권2호
    • /
    • pp.183-194
    • /
    • 2019
  • The consumption of fresh vegetables has been related to recurrent outbreaks of foodborne diseases (FBD) worldwide. Therefore, the development of effective alternative technologies is necessary to improve the safety of these products. This study aimed to isolate and identify epiphytic lactic acid bacteria (LAB) from fresh fruits and leafy vegetables and characterize their antagonistic capacity due to their ability to produce bacteriocins or antibacterial compounds. For this, 92 LAB isolates from fruits and leafy vegetables were screened for antagonistic activity. Two strains with the highest and broadest antagonistic activities were selected for further characterization; one from cantaloupe melon (strain CM175) and one from cilantro leaves (strain C15). The cell-free supernatants (CFS) of CM175 and C15 were found to exhibit antagonistic activity against FBD-causing pathogens. The CM175 and C15 strains were identified as Pediococcus pentosaceus and Lactobacillus graminis, respectively. Notably, the P. pentosaceus CM175 CFS stopped the growth of Salmonella Typhimurium, Salmonella Saintpaul, Staphylococcus aureus, and Listeria monocytogenes, and delayed Escherichia coli O157:H7 growth. Moreover, L. graminis C15 CFS delayed the growth of all indicator pathogens, but did not completely stop it. Organic acids and bacteriocin-like molecules were determined to be possibly exerting the observed antagonistic activity of the identified LAB strains. Thus, application of the antagonistic compounds produced by Pediococcus pentosaceus and Lactobacillus graminis could be a novel and ecological strategy in developing antimicrobial biopreservatives for the food industry and mitigating FBD by reducing the biological contamination in fruit and vegetable orchards, mainly via their potential in controlling both gram-negative and gram-positive pathogenic bacteria.

Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

  • Zhao, Jie;Wang, Siran;Dong, Zhihao;Li, Junfeng;Jia, Yushan;Shao, Tao
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1038-1048
    • /
    • 2021
  • Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

Effects of Adding Glucose, Sorbic Acid and Pre-fermented Juices on the Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silages

  • Shao, Tao;Ohba, N.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.808-813
    • /
    • 2004
  • This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0${\times}$105 CFU $g^{-1}$ on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g $kg^{-1}$). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).