• Title/Summary/Keyword: Feedlot Hair Sheep

Search Result 2, Processing Time 0.015 seconds

Influence of ferulic acid and clinoptilolite supplementation on growth performance, carcass, meat quality, and fatty acid profile of finished lambs

  • Tanori-Lozano, Ana;Quintana-Romandia, Adrian Imanol;Montalvo-Corral, Maricela;Pinelli-Saavedra, Araceli;Valenzuela-Melendres, Martin;Davila-Ramirez, Jose Luis;Islava-Lagarda, Thalia Yamileth;Gonzalez-Rios, Humberto
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.274-290
    • /
    • 2022
  • This study was conducted to evaluate the effect of ferulic acid (FA) and clinoptilolite (CTL) supplementation on the growth performance, carcass characteristics, and meat quality of hair-breed lambs. Twenty-eight Kathadin male lambs (33.72 ± 3.4 kg) were randomly allocated to one of the four diets (n=7) under a 2 × 2 factorial arrangement to evaluate the effect of FA (0 or 300 ppm) and CTL (0% or 1%) during the last 40 days of the finishing phase. No interaction between additives was shown for growth performance, carcass characteristics and meat quality, with exception of the fatty acid profile (p < 0.05). FA reduced feed intake and carcass conformation (p < 0.05). Wholesale cuts were not affected by FA or CTL (p > 0.05). The L*, a*, and C* color parameters and some intramuscular fatty acids of the longissimus thoracis muscle were positively modified by CTL supplementation (p < 0.05). While there was no FA × CTL interaction, each additive could be used individually in animal nutrition to improve the feedlot performance and meat quality of the lambs.

Influence of Protein and Energy Level in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetics and Carcass Characteristics

  • Rios-Rincon, F.G.;Estrada-Angulo, A.;Plascencia, A.;Lopez-Soto, M.A.;Castro-Perez, B.I.;Portillo-Loera, J.J.;Robles-Estrada, J.C.;Calderon-Cortes, J.F.;Davila-Ramos, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Forty-eight Pelibuey${\times}$Katahdin male intact lambs ($23.87{\pm}2.84$ kg) were used in an 84-d feeding trial, with six pens per treatment in a $2{\times}2$ factorial design arrangement. The aim of the study was to evaluate the interaction of two dietary energy levels (3.05 and 2.83 Mcal/kg ME) and two dietary protein levels (17.5% and 14.5%) on growth performance, dietary energetics and carcass traits. The dietary treatments used were: i) High protein-high energy (HP-HE); ii) High protein-low energy (HP-LE); iii) Low protein-high energy (LP-HE), and iv) Low protein-low energy (LP-LE). With a high-energy level, dry matter intake (DMI) values were 6.1% lower in the low-protein diets, while with low-energy, the DMI values did not differ between the dietary protein levels. Energy levels did not influence the final weight and average daily gain (ADG), but resulted in lower DMI values and higher gain efficiencies. No effects of protein level were detected on growth performance. The observed dietary net energy (NE) ratio and observed DMI were closer than expected in all treatments and were not affected by the different treatments. There was an interaction (p<0.03) between energy and protein level for kidney-pelvic and heart fat (KPH), KPH was higher in lambs fed high energy and high protein diet but not in high energy and low protein diet. The KPH was increased (20.2%, p = 0.01) in high-energy diets, while fat thickness was increased (21.7%, p = 0.02) in high-protein diets. Therefore, it is concluded that dietary energy levels play a more important role in feed efficiency than protein levels in finishing lambs with a high-energy diet (>2.80 Mcal/kg ME). Providing a level of protein above 14.5% does not improves growth-performance, dietary energetics or carcass dressing percentage.