• Title/Summary/Keyword: Force-frequency relationship

Search Result 107, Processing Time 0.025 seconds

벽식점성감쇠기의 감쇠 성능에 관한 기초적인 연구 (Experimental Study on Energy Dissipation Capacities of the Viscous Damping Wall)

  • 이장석;김남식;조강표
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.246-251
    • /
    • 2003
  • This paper presents an experimental study on the energy dissipation characteristics of viscous damping wall (VDW). VDW is consisted of a plate floating in a thin case made of steel plated filled with highly viscous silicone oil. Because VDW demonstrates both viscous damping and stiffness characteristics, the viscous resisting force can be expressed as the sum of velocity dependant viscous damping force and displacement dependant restoring force. The viscous resisting force and energy absorbing capacity can be easily adjusted by changing three factors, i.e. viscosity of the fluid, gap distance and area of the wall plates. VDW was tested using a series of harmonic (sinusoidal) displacement history having different frequency and amplitude and the force-displacement relationship was recorded. The relationship between dissipated energy with three factors and the influence of exciting frequency on resisting force were Investigated

  • PDF

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제28권3호
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Determination of cable force based on the corrected numerical solution of cable vibration frequency equations

  • Dan, Danhui;Chen, Yanyang;Yan, Xingfei
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.37-52
    • /
    • 2014
  • The accurate determination of cable tension is important to the monitoring of the condition of a cable-stayed bridge. When applying a vibration-based formula to identify the tension of a real cable under sag, stiffness and boundary conditions, the resulting error must not be overlooked. In this work, by resolving the implicit frequency function of a real cable under the above conditions numerically, indirect methods of determining the cable force and a method to calculate the corresponding cable mode frequency are investigated. The error in the tension is studied by numerical simulation, and an empirical error correction formula is presented by fitting the relationship between the cable force error and cable parameters ${\lambda}^2$ and ${\xi}$. A case study on two real cables of the Shanghai Changjiang Bridge shows that employing the method proposed in this paper can increase the accuracy of the determined cable force and reduce the computing time relative to the time required for the finite element model.

정현상 비대칭으로 Taper진 부재의 임계하중과 고유진동수와의 관계 (The Relationship between Critical Load and Frequency of Sinusolidally Non-symmetrically Tapered Member)

  • 이혁;홍종국;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.59-66
    • /
    • 2000
  • It is generally known that the lateral frequency( ω) of the vibration of a prismatic beam-column decreases according to the rele (equation omitted) (ω/sub 0/=natural frequency). In the cases of tapered members, the determination of P/ sub/ cr/(elastic critical load) and ω/ sub 0/ are not easy. Furthermore, the relationship between the compressive load and frequency can not be determined by the conventional analytical method. The axial force-frequency relationship of sinusolidally non-symmetrically tapered members with different shapes were investigated using the finite element method. To obtain the two eigenvalues, the axial thrust was increased step by step and the corresponding frequency was calculated. The result indicated that the axial thrust of the elastic critical load ratio and the square of the frequency ratio can be approximately represented in any case by a straight line. Finally, the linear relationship is also applicable to the sinusolidally non-symmetrically tapered member.

  • PDF

다 경간 압축재의 하중-진동수 관계 (Load-Frequency Relationships of Continuous Compression Members)

  • 이수곤;김순철;임동혁
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 1998
  • The apparently different physical problems of lateral vibration and elastic stability of a linear member are limiting cases of a single phenomenon, the more general expression being the mode of vibration with end thrust. For a single-span beam-column, it is generally known that the square of the frequency of lateral vibration is approximately linearly related to compressive axial force. In this paper the relationship between the frequency and axial force of multi-span compression members is investigated by means of the finite element method.

  • PDF

진동응답 계측결과를 이용한 기진력의 추정 (Estimation of Excitation Forces from Measured Response Data)

  • 한상보
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-60
    • /
    • 1995
  • It is attempted to estimate excitation force of a linear vibratory system using measured vibration responses. The excitation force is estimated from the relationship between the vibration response and system characteristic matrices which are extracted from both the mathematical model of the system and actual response in contrast to the usual approach of inverting the frequency response matrices. This extraction scheme is based on the fact that the vibration response can be expressed in term of linear combination of frequency domain modal vectors defined as mutually orthonormal basis vectors in frequency domain. The extracted frequency domain basis vectors are very stable in computational manipulation. It is found that the estimated excitation force is in good agreement with actually measured force except at the natural frequencies the structure, which is the common feature still to be overcome by the research efforts in this area. From the results of this paper, this disagreement is considered to come from the discrepancy between the model and actual value of the mass, damping and stiffness of the structure.

절삭력 신호를 이용한 공구운동의 모델링과 고정도 표면생성에 관한 연구 (A study on the Modeling of Tool Motion and High Accuracy Surface Generation by Use of Cutting Force Signal)

  • 김정두;이은복
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1951-1962
    • /
    • 1993
  • The creation process of a typical machined surface is treated here as a dynamic system. An investigation is carried out to establish a relationship between the characteristics of cutting force fluctuations that cause vibration response of the tool-workpiece system and the formation of surface in face cutting by sintered carbide cutting tool. Cutting force is measured and analyzed in frequency domain. The power spectral densities of cutting force give a useful information in surface generation and it can be used to find out the control factor of surface roughness. The terms, PSD ratio & Normalized spindle frequency PSD, are defined and when the value of power in spindle frequency is absolutely little but relatively large, it is obtained high accuracy surface roughness. The aim of this research is to find surface profile by measured and analyzed cutting force signals. The simulation of surface generation gives the comprechension of its mechanism and help to predict and control the surface quality. In this study, it is suggested what informations about surface generation can be acquired from the cuttuing force signal and an way of generating a better surface.

Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements

  • Wang, Jun;Liu, Weiqing;Wang, Lu;Han, Xiaojian
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.939-957
    • /
    • 2015
  • In this paper, a new approach based on the continuum model is proposed to estimate the main cable tension force of suspension bridges from measured natural frequencies. This approach considered the vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along its entire length. The equation reflected the relationship between vibration frequency and horizontal tension force of a main cable was derived. To avoid to generate the additional cable tension force by sag-extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable was identified from the first three odd frequencies. It is shown that the estimated results agree well with the designed values. The proposed approach can be used to conduct the long-term health monitoring of suspension bridges.

Relatoinship between Sarcoplasmic Reticular Calcium Release and $Na^+-Ca^{2+}$ Exchange in the Rat Myocardial Contraction

  • Kim, Eun-Gi;Kim, Soon-Jin;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.197-210
    • /
    • 2000
  • Suppressive role of $Na^+-Ca^{2+}$ exchange in myocardial tension generation was examined in the negative frequency-force relationship (FFR) of electric field stimulated left atria (LA) from postnatal developing rat heart and in the whole-cell clamped adult rat ventricular myocytes with high concentration of intracellular $Ca^{2+}$ buffer (14 mM EGTA). LA twitch amplitudes, which were suppressed by cyclopiazonic acid in a postnatal age-dependent manner, elicited frequency-dependent and postnatal age-dependent enhancements after $Na^+-reduced,\;Ca^{2+}-depleted$ (26 Na-0 Ca) buffer application. These enhancements were blocked by caffeine pretreatment with postnatal age-dependent intensities. In the isolated rat ventricular myocytes, stimulation with the voltage protocol roughly mimicked action potential generated a large inward current which was partially blocked by nifedipine or $Na^+$ current inhibition. 0 Ca application suppressed the inward current by $39{\pm}4%$ while the current was further suppressed after 0 Na-0 Ca application by $53{\pm}3%.$ Caffeine increased this inward current by $44{\pm}3%$ in spite of 14 mM EGTA. Finally, the $Na^+$ current-dependent fraction of the inward current was increased in a stimulation frequency-dependent manner. From these results, it is concluded that the $Ca^{2+}$ exit-mode (forward-mode) $Na^+-Ca^{2+}$ exchange suppresses the LA tension by extruding $Ca^{2+}$ out of the cell right after its release from sarcoplasmic reticulum (SR) in a frequency-dependent manner during contraction, resulting in the negative frequency-force relationship in the rat LA.

  • PDF

국내하천 하상재료 대표입경 조사 및 소류력과의 관계 분석 (Investigation on Mean Diameter of Bed Material and Relationship with Tractive Force in Korean Rivers)

  • 이두한;손민우
    • 한국지형학회지
    • /
    • 제18권1호
    • /
    • pp.29-39
    • /
    • 2011
  • 본 연구의 목적은 국내 자연하천에서 하상재료의 입경과 흐름에 의한 소류력의 상관관계를 살펴보는 것이다. 하상재료의 크기를 분석하기 위해 현장에서 하상재료를 채취하고 대표입경을 산정하였다. 하천이 가지는 흐름 특성은 마찰속도와 소류력으로 분석하였고, 이를 이용하여 대표입경과의 관계를 살펴보았다. 대상하천은 국내 4대 유역의 특성을 대표할 수 있는 18개 하천이며, 총 94개 지점에서 연구가 수행되었다. 소류력과 마찰속도의 산정을 위해 국내 하천의 강턱유량에 적합한 홍수빈도를 결정하였으며, 평균 연최대유량의 개념으로 생각할 수 있는 1.01년 빈도 홍수량이 가장 강턱유량에 적합하다는 결론을 얻었다. 분석 결과를 통해 국내 하천의 소류력 및 마찰속도와 하상재료 대표입경 간의 상호특성을 제시하였다.