• 제목/요약/키워드: Foxo3a

검색결과 32건 처리시간 0.024초

Chelidonium majus Induces Apoptosis of Human Ovarian Cancer Cells via ATF3-Mediated Regulation of Foxo3a by Tip60

  • Shen, Lei;Lee, Soon;Joo, Jong Cheon;Hong, Eunmi;Cui, Zhen Yang;Jo, Eunbi;Park, Soo Jung;Jang, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.493-503
    • /
    • 2022
  • Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.

Antioxidant Activity and Its Mechanism of Paeonia lactiflora Pall Extract

  • Heo, Jee-In;Kim, Jeong-Hyeon;Lee, Jeong-Min;Kim, Sung-Chan;Park, Jae-Bong;Kim, Jaebong;Lee, Jae-Yong
    • Natural Product Sciences
    • /
    • 제19권1호
    • /
    • pp.49-53
    • /
    • 2013
  • Paeonia lactiflora Pall (PL) has been used as a traditional herbal medicine in China, Korea, and Japan for more 1,200 years. PL has reported to have antioxidant activity and protective effect of cells from oxidative stress, although the mechanism has not been verified. FOXO3a is a transcription factor that binds to its target gene's consensus FOXO binding site. FOXO3a protein modulates the various biological functions including cell cycle control, apoptosis, DNA repair, and ROS detoxification. Therefore, FOXO3a activity is associated with cancer, aging, diabetes, infertility, neurodegeneration, and immune system dysfunction. Here we found that FOXO3a was activated by PL extract. Transcriptional target genes such as MnSOD, p27, and GADD45 were activated by PL extract. Protein levels of MnSOD and catalase were increased, consequently, ROS level was reduced in HEF cells by PL extract. These findings suggest that PL extract has an antioxidant activity through FOXO activation and thereby activation of FOXO target genes, MnSOD and catalase.

Mechanism for Antioxidant Activity of Nardostachys chinensis root Extract

  • Heo, Jee-In;Kim, Jeong-Hyeon;Lee, Jeong-Min;Kim, Sung Chan;Park, Jae-Bong;Kim, Jaebong;Lee, Jae-Yong
    • Journal of Applied Biological Chemistry
    • /
    • 제57권1호
    • /
    • pp.17-22
    • /
    • 2014
  • Nardostachys chinensis (N. chinensis) has been used in traditional medicine as a sedative and analgesic. It has been reported that N. chinensis extract has an antioxidant activity. However, the mechanism has not been elucidated. In this study, we showed that FOXO3a was activated by N. chinensis extract. FOXO3a is a transcriptional factor that involved in cell cycle arrest, DNA repair, apoptosis, and detoxification of reactive oxygen spices (ROS). Protein level of FOXO3a was increased by N. chinensis extract whereas phospho-FOXO3a (Thr 32) was not changed. Promoter activities of target genes of FOXO3a such as MnSOD, p27, and GADD45 were increased by N. chinensis extract. Among target genes, protein level of MnSOD was increased by N. chinensis extract, and this leads to removal of ROS level in human embryonic fibroblast (HEF) cells. These results suggested that N. chinensis extract has an antioxidant activity by upregulation of MnSOD through FOXO3a activation.

Expression and Prognostic Implications of FOXO3a and Ki67 in Lung Adenocarcinomas

  • Liu, Hong-Bin;Gao, Xiang-Xiang;Zhang, Qing;Liu, Jian;Cui, Yuan;Zhu, Yan;Liu, Yi-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1443-1448
    • /
    • 2015
  • To investigate the significance of FOXO3a and Ki67 in human lung adenocarcinomas. Envision immunohistochemical staining and Western blotting were used to examine the protein expression of FOXO3a in 127 cases of human lung adenocarcinoma specimens. The positive rate in lung adenocarcinoma (55.9%) was lower than that in normal tissues (80%). We found that the expression of FOXO3a was closely related with the degree of differentiation, TNM staging, lymph node metastasis and survival. In addition, significant differences in the different pathological types of lung adenocarcinoma cases (P<0.01). The FOXO3a positive rate of the acini as the main type (APA) (86.7%) and the lepidic as the main type (LPA) (82.4%) was higher than the solid as the main type (SPA) (50.0%), the papilla as the main type (PPA) (42.9%) and the micropapilla as the main type (MPA) (9.4%). Moreover, the expression of FOXO3a was negatively related with Ki67 expression. Our results suggested that the expression of FOXO3a is closely correlated with the aggressiveness of lung adenocarcinoma. It was indicated that disregulation of FOXO3a might play key roles in the occurrence and development of lung a denocarcinoma and joint detection of the two markers might play an important role in diagnosing tumors.

Replication Study of Association between Forkhead Box O3 (FOXO3) Polymorphisms and Tuberculosis in Korean Population

  • Park, Sangjung;Kim, Sung-Soo;Jin, Hyun-Seok;Cho, Jang-Eun
    • 대한의생명과학회지
    • /
    • 제26권1호
    • /
    • pp.42-46
    • /
    • 2020
  • Tuberculosis (TB) remains a major health problem worldwide. TB depends not only on the characteristics of the Mycobacterium tuberculosis (MTB) but also on the genetic susceptibility of infected patients. Recent studies have suggested that FOXO3 play an important role in the human immune associated disorder, such as TB. It was previously reported that FOXO3 genetic variants associated with a risk of TB in Chinese population. In this study, we confirm whether the genetic polymorphism of the FOXO3 gene, which was previously in Chinese, is reproduced in Korean population. Of the 154 SNPs were extracted from the FOXO3 gene, reproducibility analysis of the four SNPs performed in the previous study showed that there was a statistically significant correlation in the three SNPs (rs4946935, rs1536057, rs3800228). This study suggests that polymorphism of the FOXO3 gene in Koreans may affect the onset of tuberculosis and could be used to treat and prevent tuberculosis.

Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity

  • Nguyen, Lich Thi;Lee, Yeon-Hee;Sharma, Ashish Ranjan;Park, Jong-Bong;Jagga, Supriya;Sharma, Garima;Lee, Sang-Soo;Nam, Ju-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.205-213
    • /
    • 2017
  • Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

Suppression of Foxo3-Gatm by miR-132-3p Accelerates Cyst Formation by Up-Regulating ROS in Autosomal Dominant Polycystic Kidney Disease

  • Choi, Seonju;Kim, Do Yeon;Ahn, Yejin;Lee, Eun Ji;Park, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.311-320
    • /
    • 2021
  • Accumulation of reactive oxygen species (ROS) is associated with the development of various diseases. However, the molecular mechanisms underlying oxidative stress that lead to such diseases like autosomal dominant polycystic kidney disease (ADPKD) remain unclear. Here, we observed that oxidative stress markers were increased in Pkd1f/f:HoxB7-Cre mice. Forkhead transcription factors of the O class (FOXOs) are known key regulators of the oxidative stress response, which have been observed with the expression of FoxO3a in an ADPKD mouse model in the present study. An integrated analysis of two datasets for differentially expressed miRNA, such as miRNA sequencing analysis of Pkd1 conditional knockout mice and microarray analysis of samples from ADPKD patients, showed that miR-132-3p was a key regulator of FOXO3a in ADPKD. miR-132-3p was significantly upregulated in ADPKD which directly targeted FOXO3 in both mouse and human cell lines. Interestingly, the mitochondrial gene Gatm was downregulated in ADPKD which led to a decreased inhibition of Foxo3. Overexpression of miR-132-3p coupled with knockdown of Foxo3 and Gatm increased ROS and accelerated cyst formation in 3D culture. This study reveals a novel mechanism involving miR-132-3p, Foxo3, and Gatm that is associated with the oxidative stress that occurs during cystogenesis in ADPKD.

백굴채 추출물의 항산화 활성과 기전 (Antioxidant Activity and Its Mechanism of Chelidonium majus Extract)

  • 허지인;김정현;이정민;임순성;김성찬;박재봉;김재봉;이재용
    • 한국약용작물학회지
    • /
    • 제21권2호
    • /
    • pp.136-141
    • /
    • 2013
  • Chelidonium majus (CM) contains several isoquinoline alkaloids that have been reported to have various biological activities such as anti-inflammatory, antimicrobial, antioxidant, immune-modulatory, and antitumoral. It has been reported that the extract of CM had an antioxidant potential, however the mechanism has not been verified. In this study, we found that CM extract activated FOXO3a. FOXO3a is a transcription factor that involved in various biological processes such as cell cycle arrest, apoptosis, DNA repair, and ROS detoxification. Transcriptional activities of FOXO3a were regulated by post-translational modifications including phosphorylation, acetylation, and ubiquitination. Protein level of FOXO3a was increased by CM extract. Promoter activities of FOXO-transcriptional target genes such as MnSOD, p27 and GADD45 were activated by CM extract in a dose dependent manner. In addition, protein level of MnSOD, major antioxidant enzyme, was increased by CM extract. Thereby ROS level was decreased by CM in old HEF cells. These results suggest that CM extract has an antioxidant activity through FOXO activation.

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

  • Bae, Jun Hyun;Seo, Dae Yun;Lee, Sang Ho;Shin, Chaeyoung;Jamrasi, Parivash;Han, Jin;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.585-592
    • /
    • 2021
  • Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg) + resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic exercise (CAE, n = 11). The CRE group performed progressive ladder exercise (starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at 85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62, and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased in the CRE and CAE groups. The CRE and CAE groups further showed significantly decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT, FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic exercise directly affected muscle wasting by modulating the AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle type.

Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells

  • Yao, Chih-Jung;Chow, Jyh-Ming;Chuang, Shuang-En;Chang, Chia-Lun;Yan, Ming-De;Lee, Hsin-Lun;Lai, I-Chun;Lin, Pei-Chun;Lai, Gi-Ming
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.247-256
    • /
    • 2017
  • Background: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. Methods: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. Results: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. Conclusion: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.