• Title/Summary/Keyword: Fumigaclavine C

Search Result 2, Processing Time 0.015 seconds

Stimulatory Effects of Sugarcane Molasses on Fumigaclavine C Biosynthesis by Aspergillus fumigatus CY018 via Biofilm Enhancement

  • Tao, Jun;An, Fa-Liang;Pan, Zheng-Hua;Lu, Yan-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.748-756
    • /
    • 2018
  • Biofilms are of vital significance in bioconversion and biotechnological processes. In this work, sugarcane molasses was used to enhance biofilms for the improvement of the production of fumigaclavine C (FC), a conidiation-associated ergot alkaloid with strong anti-inflammatory activities. Biofilm formation was more greatly induced by the addition of molasses than the addition of other reported biofilm inducers. With the optimal molasses concentration (400 g/l), the biofilm biomass was 6-fold higher than that with sucrose, and FC and conidia production was increased by 5.8- and 3.1-fold, respectively. Moreover, the global secondary metabolism regulatory gene laeA, FC biosynthetic gene fgaOx3, and asexual central regulatory genes brlA and wetA were upregulated in molasses-based biofilms, suggesting the upregulation of both asexual development and FC biosynthesis. This study provides novel insight into the stimulatory effects of molasses on biofilm formation and supports the widespread application of molasses as an inexpensive raw material and effective inducer for biofilm production.

Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice

  • Yu, Wan-Guo;He, Yun;Chen, Yun-Fang;Gao, Xiao-Yao;Ning, Wan-E;Liu, Chun-You;Tang, Ting-Fan;Liu, Quan;Huang, Xiao-Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.