• Title/Summary/Keyword: Fungal Population Size

Search Result 3, Processing Time 0.018 seconds

Effect of Dietary Concentrate on Fungal Zoosporogenesis in Sheep Rumen

  • Matsui, H.;Ushida, K.;Kojima, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.599-602
    • /
    • 1997
  • Fluctuation of fungal zoospores on agar strips were observed in the rumen of sheep fed three different levels of dietary concentrate, timothy hay: concentrate = 3:0 (AF diet), timothy hay: concentrate = 2:1 (MC diet), timothy hay : concentrate = 1:2 (HC diet) respectively. The number of zoospores on the strip was drastically decreased after morning feed with AF diet. The number was the highest at 0 h ($1.34{\times}10^2/cm^2$), then declined to $2.0{\times}10^3/cm^2$ at 9 h after feeding. In the rumen of animals fed MC diet, the number of zoospores decreased with time after feeding, although the decrement was slower than that with AF diet. During 0-3 h after feeding, number of zoospores was $1.6{\times}10^4/cm^2$. Although the number slightly decreased at 6 and 9 h, relatively high levels were maintained. It seems that the inducers for zoospore-release were maintained at relatively high concentration throughout incubation period. The fluctuation pattern of number of germinated zoospores was different in the rumen of animals fed HC diet from those of AF and MC diets. The number of zoospores was constantly maintained at lower level ($1.0{\times}10^3/cm^2$) than the other diets. For MC diet, continuous high number of germinated zoospores may be due to the continuous release of zoospores by hemes in timothy hay and concentrate feed, and by unknown mechanisms. Unlike AF diet which promoted relatively rapid decline of zoosporogenesis, supplementation of concentrate feed to the timothy hay did not promote such rapid decline of zoosporogenesis. It was suggested that release of inducers for zoosporogenesis from concentrate feed persisted longer time than from timothy hay. HC diet promoted the lowest zoospore production, suggested the lowest fungal population size in this experiment. These results show that an appropriate amount of concentrate may support fungal growth and stimulate zoosporogenesis in the rumen.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the Causal Agent of Anthracnose and Soft Rot in Avocado Fruits cv. "Hass"

  • Fuentes-Aragon, Dionicio;Juarez-Vazquez, Sandra Berenice;Vargas-Hernandez, Mateo;Silva-Rojas, Hilda Victoria
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.92-100
    • /
    • 2018
  • The filamentous Ascomycota Colletotrichum gloeosporioides sensu lato is a fungus that has been reported worldwide as a causal agent of anthracnose disease in avocado and other crops. In Mexico, this species affects fruits from an early stage of development in the orchard until the post-harvest stage. Although fungicides are continuously applied to control Colletotrichum species, pericarp cankers and soft rot mesocarp in fruits are still frequently observed. Considering the lack of a precise description of the causative agent, the aim of the current study was to determine the pathogens involved in this symptomatology. Twenty-four isolates were consistently obtained from the pericarp of avocado fruits cv. "Hass" collected in the central avocado-producing area of Mexico. Morphological features such as colony growth, conidia size, and mycelial appressorium were assessed. Bayesian multilocus phylogenetic analyses were performed using amplified sequences of the internal transcribed spacer region of the nuclear ribosomal DNA; actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase partial genes; and APn2-Mat1-2 intergenic spacer and mating type Mat1-2 partial gene from the nine selected isolates. In addition, fruits were inoculated with a conidial suspension and reproducible symptoms confirmed the presence of Colletotrichum fructicola in this area. This pathogenic species can now be added to those previously reported in the country, such as C. acutatum, C. boninense, C. godetiae, C. gloeosporioides, and C. karstii. Disease management programs to reduce the incidence of anthracnose should include C. fructicola to determine its response to fungicides that are routinely applied, considering that the appearance of new species is affecting the commercial quality of the fruits and shifting the original population structure.