• Title/Summary/Keyword: GEO-KOMPSAT-2A

Search Result 74, Processing Time 0.027 seconds

GEO-KOMPSAT-2 LAE Burn Plan in Supersynchronous Transfer Orbit (정지궤도복합위성의 SSTO 액체원지점엔진 점화계획)

  • Park, Bong-Kyu;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • GEO-KOMPSAT-2 which is under development by KARI to be launched in 2018 is expected to be injected into its orbit through the standard GTO(Geostationary Transfer Orbit) or SSTO(Supersynchronous Transfer Orbit). While the standard GTO mission has been applied for the most of the geostationary satellites, the SSTO mission is rare case and significantly different from the standard GTO mission in technical point of view. This paper lists the operational constraints to be applied for GEO-KOMPSAT-2 SSTO mission, and introduces a preliminary LAE burn plan for GEO-KOMPSAT-2 mission. In order to evaluate the developed plan, a simulation study has been performed considering ground station visibility.

Optimization of GEO-KOMPSAT-2 Apogee Engine Burn Plan (정지궤도복합위성 원지점엔진 분사계획 최적화 연구)

  • Park, Bongkyu;Choi, Jaedong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.90-97
    • /
    • 2016
  • GEO-KOMPSAT-2A and GEO-KOMPSAT-2B are under development by KARI to replace the COMS mission, and will be launched in 2018 and 2019, respectively. GEO-KOMPSAT-2 will be launched and injected into the GTO (Geostationary Transfer Orbit) by the Ariane V launcher. Once injected into the GTO, the satellites are transferred to the drift orbit by applying a series of apogee engine burns. The burn epoch time, duration, and intervals are selected such that the satellite is placed closest to the target drift longitude, or at the drift start longitude. For GEO-KOMPSAT-2, four or five LAE (Liquid Apogee Engine) burns will be applied for drift orbit injection. This paper establishes the GEO-KOMPSAT-2 LAE burn plan, considering predefined constraints and adjustments, taking into account the perturbing forces. Two approaches have been analyzed: the first is a single shot approach, whereas the other is an iteration based optimal solution. Optimal solution has been obtained using the Focusleop, a geostationary satellite LEOP tool.

GEO-KOMPSAT-2 Laser Ranging Time Slot Analysis (정지궤도복합위성 레이저 레인징 가능 시간대 해석)

  • Park, Bongkyu;Choi, Jaedong;Lee, Sang-Ryool
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • In 2018 and 2019, GEO-KOMPSAT-2A and GEO-KOMPSAT-2B will be launched in order to succeed the COMS mission. The two satellites will be collocated in $128.25{\pm}0.05$ degrees East. For precise ranging and orbit determination, the GEO-KOMPSAT-2B will be equipped with LRA (Laser Retroreflector Assembly) and SLR (Satellite Laser Ranging) systems will be utilized. This systems are located in Geochang. In this case, the laser beam emitted from the SLR station can cause problems in terms of safety of optical payloads and image quality. As a solution of this possibility, the laser ranging will be done during the night time when the shutters of the optical payloads remain closed. Still, the optical payload of the GEO-KOMPSAT-2A is not safe from the laser beam because its optical payload shall continue its mission for 24 hours a day. In order to handle this problem, the laser ranging shall be limited to time slots when the angular distance between two satellites observed from the Geochang SLR station is large enough. In this paper, through orbit simulations, the characteristics of variation of the angular distance between the two satellites is analyzed to figure out the time slots when laser ranging is allowed.

GEO-KOMPSAT-2A KSEM Requirements and its System Design (정지궤도복합위성 우주기상탑재체 개발 요구사항 및 시스템 설계)

  • Jin, Kyoung-Wook;Jang, Sung-Soo;Choi, Jung-Su;Yang, Koon-Ho;Seon, Jongho;Chae, Kyu-Sung;Park, Junyong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2014
  • GEO-KOMPSAT-2 (GK2) program, which develops two advanced geostationary satellites simultaneously after the successful COMS mission (2010~present), is on going. An improved next generation meteorological payload and space weather sensors will be equipped on the GK2A. The space weather sensor will be the Korea's first geostationary space environment monitoring payload. Main objectives of the project are its applications into space weather forecasting and pre-warning of hazardous space weather by monitoring physical phenomena such as distribution of high energetic particles, Earth's magnetic fields and charging currents on the spacecraft at a geostationary orbit using the three space weather sensors(energetic particle detector, magnetometer and charging monitor). The summary of the GK2A space weather sensor development and its system and interface designs were described in the paper.

A Study on Plume Disturbance Calculation Method of GEO-KOMPSAT-2 Satellite (정지궤도 복합위성 플룸 외란 계산 기법 연구)

  • Kang, Wooyong;Chae, Jongwon;Park, Youngwoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • The attitude control, station keeping and wheel off-loading at GEO-KOMPSAT-2 are realized by thrusters firings. Thrusters 1, 2 and 3 are mounted on the same axis as the solar array, which generates the plume disturbance largely. Therefore the effect of plume disturbance should be analyzed from satellite design phase. In this paper, we described the calculation method of plume disturbance and analyzed the plume disturbance of thruster 1,2 and 3 using GEO-KOMPSAT-2 initial configuration.

A Study on the RPC Model Generation from the Physical Sensor Model

  • Kim, Hye-Jin;Kim, Dae-Sung;Lee, Jae-Bin;Kim, Yong-Il
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.139-143
    • /
    • 2002
  • The rational polynomial coefficients (RPC) model is a generalized sensor model that is used as an alternative solution for the physical sensor model for IKONOS of the Space Imaging. As the number of sensors increases along with greater complexity, and the standard sensor model is needed, the applicability of the RPC model is increasing. The RPC model has the advantages in being able to substitute for all sensor models, such as the projective, the linear pushbroom and the SAR. This report aimed to generate a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects 510~730 nm panchromatic imagery with a ground sample distance (GSD) of 6.6 m and a swath width of 17 km by pushbroom scanning. The least square solution was used to estimate the RPC. In addition, data normalization and regularization were applied to improve the accuracy and minimize noise. This study found that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

GENERATION OF GEO-SPATIAL INFORMATION USING KOMPSAT-2 IMAGERY

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol;Lee, Kyu-Man
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • KOMPSAT-2 is the seventh high-resolution satellite in the world that provides both 1m panchromatic images and 4m multispectral images of the GSD. It is expected to be used across many different fields including digital mapping, territorial and environmental monitoring. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric data, such as satellite orbits and detailed mapping information. This study aims to generate the DEM and orthoimage by using the stereo images of KOMPSAT-2 and to explore the applicability of geo-spatial information with KOMPSAT-2. In order to ensure generation of DEMs of optimal accuracy, the RPCs data and a suitable number of GCPs were used. The accuracy of DEM generated in this research compared with DEM generated from 1:5,000 digital map. The mean differences between horizontal position of the orthoimage and the digital map data are found to be ${\pm}$3.1m, which is in the range of ${\pm}$3.5m, within the permitted limit of a 1:5,000 digital map. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Image Radiometric Quality Assessment of the Meteorological Payload on GEO-KOMPSAT-2A (정지궤도복합위성 기상탑재체 영상의 복사 성능 품질 측정)

  • Jin, Kyoung-Wook;Yang, Koon-Ho;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.30-39
    • /
    • 2013
  • In this study, calibration processes and methods of evaluating the radiometric quality of satellite images from the meteorological payload on the GEO-KOMPSAT-2A were described. MTF(Modulation Transfer Function), SNR(Signal-To-Noise Ratio), NEdT(Noise Equivalent Delta Temperature), and Dynamic Range, which are the major parameters for assessment of data radiometric quality of space-borne visible and infrared sensors, are focused. Key process of the quality check of the satellite data is the comparing the image radiometric performance parameters during the In-Oribit Test with those acquired from the ground tests. Validation plan of the image quality of the GEO-KOMPSAT-2A Meteorological Imager is addressed based on the analyses results of COMS MI data during the COMS In-Orbit Test period

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF