• 제목/요약/키워드: GNSS signal

검색결과 286건 처리시간 0.022초

위성항법 신호생성 시뮬레이터 구현을 위한 신호생성 알고리즘 연구 (Study on for Simulation of GNSS Signal Generation)

  • 김태희;이재은;이상욱;김재훈;황동환
    • 한국항공우주학회지
    • /
    • 제37권11호
    • /
    • pp.1148-1156
    • /
    • 2009
  • 본 논문에서는 위성항법분야에서 다양한 응용서비스와 항법알고리즘을 개발 또는 검증하기 위하 기능을 제공하기 위한 소프트웨어 기반의 GNSS 신호시뮬레이터 개발에 관한 것이다. GNSS 신호생성 시뮬레이터를 개발하기 위하여 위성궤도생성, 항법메시지생성, 오차생성, IF 신호생성부로 나누어 구현하였으며 각 기능은 서로의 인터페이스를 통하여 데이터를 전송하게 된다. 여기서 실질적인 위성신호와 유사한 IF 신호를 생성하기 위하여 본 논문에서 제안한 신호생성 알고리즘을 이용하여 신호를 생성한 후 수신기를 통하여 생성된 신호를 검증하였다.

Design of a Fully Reconfigurable Multi-Constellation and Multi-Frequency GNSS Signal Generator

  • ByungHyun Choi;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.295-306
    • /
    • 2023
  • This paper presents a multi-frequency and multi-constellation Global Navigation Satellite System (GNSS) signal generator that simulates intermediate frequency level digital signal samples for testing GNSS receivers. GNSS signal generators are ideally suited for testing the performance of GNSS receivers and algorithms under development in the laboratory for specific user locations and environments. The proposed GNSS signal generator features a fully-reconfigurable structure with the ability to adjust signal parameters, which is beneficial to generate desired signal characteristics for multiple scenarios including multi-constellation and frequencies. Successful signal acquisition, tracking, and navigation are demonstrated on a verified Software Defined Radio (SDR) in this study. This work has implications for future studies and advances the research and development of new GNSS signals.

GNSS Signal Design Trade-off Between Data Bit Duration and Spreading Code Period for High Sensitivity in Signal Detection

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권3호
    • /
    • pp.87-94
    • /
    • 2017
  • GNSS modernization and development is in progress throughout the globe, and it is focused on the addition of a new navigation signal. Accordingly, for the next-generation GNSS signals that have been developed or are under development, various combinations that are different from the existing GNSS signal structures can be introduced. In this regard, to design an advanced signal, it is essential to clearly understand the effects of the signal structure and design variables. In the present study, the effects of the GNSS spreading code period and GNSS data bit duration (i.e., signal design variables) on the signal processing performance were analyzed when the data bit transition was considered, based on selected GNSS signal design scenarios. In addition, a method of utilizing the obtained result for the design of a new GNSS signal was investigated.

실시간 GNSS 기만 시뮬레이터를 이용한 위성항법수신기에서의 기만 영향 분석 (An Analysis of Spoofing Effects on a GNSS Receiver Using Real-Time GNSS Spoofing Simulator)

  • 임성혁;임준혁;지규인;허문범
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.113-118
    • /
    • 2013
  • In this paper, spoofing effects on a GNSS receiver were analyzed. The spoofer (spoofing device) was classified to two categories. One is an active spoofer and the other is a passive spoofer. The active spoofer was considered for analysis. For the analysis of spoofing effects on a GNSS receiver, a real-time GNSS spoofing simulator was developed. The simulator was consisted with two parts which are a baseband signal generation part and a RF up-conversion part. The first GNSS baseband signal was generated according to spoofing parameters such as range, range rate, GNSS navigation data, spoofing to GNSS signal ratio, and etc. The generated baseband signal was up-converted to GNSS L1 band. Then the signal transmitted to a GNSS signal. For a perfect spoofing, a spoofer knew an accurate position and velocity of a spoofing target. But, in real world, that is not nearly possible. Although uncertainty of position and velocity of the target was existed, the spoofer was operated as an efficient jammer.

위성항법 이산화 IF 신호 시뮬레이터 요구사항분석 및 개념 설계 (Requirement Analysis and Conceptual Design of GNSS Digitized IF Signal Simulator)

  • 이상욱;주인원;이재은
    • 한국위성정보통신학회논문지
    • /
    • 제2권1호
    • /
    • pp.41-47
    • /
    • 2007
  • 한국전자통신연구원은 위성항법의 다양한 응용프로그램과 항법알고리즘을 위한 시험 및 평가환경을 제공하는 소프트웨어 위성항법 이산화 IF 신호시뮬레이터를 소프트웨어 기반 GNSS 공공활용기술통합검증시스템 개발 과제의 일환으로 개발하고 있다. 소프트웨어 위성항법 신호시뮬레이터는 GPS 및 갈릴레오 디지털신호를 제공하게 된다. 본 논문에서는 이러한 소프트웨어 위성항법 이산화 IF 신호 시뮬레이터의 요구사항 및 개념설계에 대하여 기술하고 있다.

  • PDF

GNSS Error Generation Simulator for Signal Quality Monitoring of KASS

  • Ji, Gun-Hoon;Choi, Jong-Yeoun;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.341-351
    • /
    • 2021
  • In this paper, a GNSS error generation simulator for Signal Quality Monitoring (SQM) is implemented by using Matlab based on mathematical models derived from the effect of GNSS signal and measurement errors. The GNSS signal measurement errors of interest in this paper include three cases such as Evil Wave Form (EWF), Multipath (MP) and Radio Frequency Interference (RFI). In order to verify the validity of the generated measurement errors, a simple form of metrics for detecting and monitoring GNSS errors is included in the simulator. The GNSS errors generated by the simulator are added to the GNSS measurement data from commercial GNSS receiver in real time, and then, the SQM is tested for various scenarios of each case configured by scenario setting of the user.

항재밍용 가변대역 다중모드 위성항법수신기 설계 및 성능분석 (Performance Analysis and Design of Variable Bandwidth Multi-Mode GNSS Receiver for Anti-Jamming)

  • 안승관;이상정
    • 한국군사과학기술학회지
    • /
    • 제13권1호
    • /
    • pp.133-139
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. It is a very simple method among the use method of GNSS receiver to vary tracking loop bandwidth of satellite signal appropriately as the jamming signal level. In this paper, this anti-jamming performance is experimented and analyzed in the laboratory and the anechoic chamber by the GNSS simulator to generate the satellite signal and the jamming signal generator to generate the jamming signal.

Evaluation of GPU Computing Capacity for All-in-view GNSS SDR Implementation

  • Yun Sub, Choi;Hung Seok, Seo;Young Baek, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.75-81
    • /
    • 2023
  • In this study, we design an optimized Graphics Processing Unit (GPU)-based GNSS signal processing technique with the goal of designing and implementing a GNSS Software Defined Receiver (SDR) that can operate in real time all-in-view mode under multi-constellation and multi-frequency signal environment. In the proposed structure the correlators of the existing GNSS SDR are processed by the GPU. We designed a memory structure and processing method that can minimize memory access bottlenecks and optimize the GPU memory resource distribution. The designed GNSS SDR can select and operate only the desired GNSS or desired satellite signals by user input. Also, parameters such as the number of quantization bits, sampling rate, and number of signal tracking arms can be selected. The computing capability of the designed GPU-based GNSS SDR was evaluated and it was confirmed that up to 2400 channels can be processed in real time. As a result, the GPU-based GNSS SDR has sufficient performance to operate in real-time all-in-view mode. In future studies, it will be used for more diverse GNSS signal processing and will be applied to multipath effect analysis using more tracking arms.

GNSS 신호 설계 동향조사 (Survey of Signal Design for Global Navigation Satellite Systems)

  • 전종현;이정행;강정완;김선우;주정민
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.