• Title/Summary/Keyword: Ginsenoside Rc

Search Result 250, Processing Time 0.032 seconds

Induction of Apoptosis by Ginsenoside Rc on SK-MEL-28 Cell Lines (인체 흑색종세포에서 Ginsenoside Rc에 의한 Apoptosis의 유도)

  • Choi Su La;Myung Pyung Keun;Jeong Seung Il;Chun Hyun Ja;Baek Seung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.209-212
    • /
    • 2003
  • A wide variety of cancer chemotherapeutic agents have been shown to induce programmed cell death (PCD, apoptosis) in various tumor cell fines in vitro. This study was performed to know how ginsenoside Rc affect on SK-MEL-28 cell line, and how they induce the apoptosis. SK-MEL-28 cell lines were treated with various concentrations of ginsenoside Rc and cultured for various times. At cell cycle analysis, cells arrested at G2/M phase by ginsenoside Rc and apotosis percentage increased along with increasing concentration and time. TUNEL assay was performed to know whether SK-MEL-28 cell fine die as apoptosis or necrosis by ginsenoside Rc. As a result, fluorescence increased along with increasing time and concentration. Fas expressed on SK-MEL-28 cell lines membrane by ginsenoside Rc was identified using flow cytometer. Ginsenoside Rc induced apoptosis against SK-MEL-28 cell fines, and the apoptosis mechanism was identified as Fas-mediated apotosis.

Effect of Ginsenoside Rc on the Pharmacokinetics of Mycophenolic Acid, a UGT1A9 Substrate, and its Glucuronide Metabolite in Rats

  • Park, So-Young;Jeon, Ji-Hyeon;Jang, Su-Nyeong;Song, Im-Sook;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Previous in vitro studies have demonstrated that ginsenoside Rc inhibits UGT1A9, but there are no available data to indicate that ginsenoside Rc inhibits UGT1A9 in vivo. The effect of single and repeated intravenous injection of ginsenoside Rc was evaluated on the pharmacokinetics of mycophenolic acid. After injection of ginsenoside Rc (5 mg/kg for one day or 3 mg/kg for five days), 2-mg mycophenolic acid was intravenously injected, and the pharmacokinetics of mycophenolic acid and mycophenolic acid-β-glucuronide were determined. Concentrations of mycophenolic acid and its metabolite from rat plasma were analyzed using a liquid chromatography-triple quadrupole mass spectrometry. Single or repeated pretreatment with ginsenoside Rc had no significant effects on the pharmacokinetics of mycophenolic acid (P > 0.05): The mean difference in maximum plasma concentration (Cmax) and area under the concentration-time curve (AUCinf) were within 0.83- and 0.62-fold, respectively, compared with those in the absence of the ginsenoside Rc. These results indicate that ginsenoside Rc has a negligible effect on the disposition of mycophenolic acid in vivo despite in vitro findings indicating that ginsenoside Rc is a selective UGT1A9 inhibitor. As a result, ginsenoside Rc has little possibility of interacting with drugs that are metabolized by UGT1A9, including mycophenolic acid.

Production of Ginsenoside Rd from Ginsenoside Rc by ${\alpha}-{\small{L}}$-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus

  • Shin, Kyung-Chul;Lee, Gi-Woong;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.483-488
    • /
    • 2013
  • Ginsenoside Rd was produced from ginsenoside Rc using a thermostable recombinant ${\alpha}-{\small{L}}$-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. The optimal reaction conditions for the production of ginsenoside Rd from Rc were pH 5.5, $80^{\circ}C$, 227 U enzyme/ml, and 8.0 g/l ginsenoside Rc in the presence of 30% (v/v) n-hexane. Under these conditions, the enzyme produced 7.0 g/l ginsenoside Rd after 30 min, with a molar yield of 100% and a productivity of 14 g $l^{-1}\;h^{-1}$. The conversion yield and productivity of ginsenoside Rd are the highest reported thus far among enzymatic transformations.

Ginsenoside Rc and Re Stimulate c-Fos Expression in MCF-7 Human Breast Carcinoma Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Ji, Sang-Mi;Cho, Jung-Yoon;Ban, Jae-Jun;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • We have found that ginsenoside Rc and Re induce c-fos in MCF-7 human breast carcinoma cells at both the mRNA and protein levels. However, neither ginsenoside activated the expression of reporter gene under the control of AP-1/TPA response elements. We have also examined the possibility that ginsenoside Rc and Re act by binding to intracellular steroid hormone receptors that act as transcriptional factors in the nucleus in inducing c-fos mRNA in MCF7 human breast carcinoma cells. However, ginsenoside Rc and Re did not bind to glucocorticoid, androgen, estrogen, or retinoic acid receptors as examined by the transcription activation of the luciferase reporter genes in CV-1 cells that were transiently transfected with the corresponding steroid hormone receptors and hormone responsive luciferase reporter plasmids. These data demonstrate that ginsenoside Rc and Re act via other transcription factors and not via estrogen receptor in c-Fos expression.

Component analysis of cultivated ginseng, cultivated wild ginseng, and wild ginseng and the change of ginsenoside components in the process of red ginseng (인삼.산양삼.자연산 산삼의 ginsenoside 함량 분석 및 홍삼화 후의 변화 관찰)

  • Jeong, H.S.;Lim, C.S.;Cha, B.C.;Choi, S.H.;Kwon, K.R.
    • Journal of Pharmacopuncture
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2010
  • Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, cultivated wild ginseng, and wild ginseng through component analysis, and to know the change of ginsenoside components in the process for making red ginseng. Methods: Comparative analysis of ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, Re, Rf, $Rg_1,\;Rg_3,\;Rh_1$ and $Rh_2$ from the cultivated ginseng 4 and 6 years, cultivated wild ginseng, and wild ginseng were conducted using High Performance Liquid Chromatography(hereafter HPLC). And the same analyses were conducted in the process of red ginseng. Results: 1. For content comparison of ginsenoside $Rb_1$, Rc, Rd, Rf, $Rg_1$ and $Rh_1$, wild ginseng showed high content, followed cultivated ginseng 4 and 6 years, cultivated wild ginseng showed low content than any other samples. 2. For content comparison of ginsenoside $Rb_2$ and Re, cultivated ginseng 4 years showed high content, followed wild ginseng and cultivated ginseng 6 years, cultivated wild ginseng showed low content than any other samples. 3. For content comparison of ginsenoside $Rg_3$, wild ginseng and cultivated wild ginseng were only showed low content. 4. For content comparison of ginsenoside $Rh_2$, cultivated wild ginseng was only showed low content. 5. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, $Rg_3$ and $Rh_1$ were increased, and ginsenoside Re and $Rg_1$ were decreased in cultivated wild ginseng. 6. In the process of red ginseng, ginsenoside $Rg_3$ and $Rh_1$ were increased, and ginsenoside $Rb_2$, Rc, and Re were decreased in cultivated ginseng 4 years. 7. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rf and $Rh_1$ were increased, and ginsenoside Rc and Rd were decreased in cultivated ginseng 6 years. Conclusions: Distribution of ginsenoside contents to the cultivated ginseng, cultivated wild ginseng, and wild ginseng was similar and was not showed special characteristics between samples. And the change of ginsenoside to the process of red ginseng, cultivated ginseng and cultivated wild ginseng were showed different aspect.

Morphological evaluation on the effect of panaxadiol series ginsenosides in irradiated mice (방사선 조사 마우스에서 인삼 panaxadiol계 ginsenosides의 효과에 관한 형태학적 평가)

  • Lee, Hae-june;Kim, Se-ra;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.179-184
    • /
    • 2004
  • The purpose of the study was to investigate the effect of ginseng saponins (panaxadiol, ginsenoside $Rb_1$, $Rb_2$, Rc, Rd) on jejunal crypt survival, endogenous spleen colony formation and apoptosis in jejunal crypt cells of mice irradiated with gamma-ray. ICR mice were given each saponin (i.p. 50 mg/kg of body weight) at 24 hours before irradiation. The radioprotective effects of saponins were compared with the irradiation control respectively. The jejunal crypts were protected by pretreatment with ginsenoside Rc (p<0.05) and Rd (p<0.05). The spleen colony was increased by pretreatment with panaxadiol (p<0.05) and ginsenoside Rd (p<0.05). And the frequency of radiation induced apoptosis was significantly reduced by pretreatment with panaxadiol (p<0.05), ginsenoside Rb2 (p<0.05), Rc (p<0.05) and Rd (p<0.01). These results suggest that ginsenoside Rc, Rd might have a major radioprotective effect.

Modulation in NMDA and $GABA_A$ Receptor Expression after Cerebroventricular Infusion of Ginsenosides

  • Oh Seikwan;Kim Hack-Seang
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.96-112
    • /
    • 2002
  • In the present study, we have investigated the effects of centrally administered ginsenoside Rc or Rgl on the modulation of NMDA receptor and $GABA_A$ receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using $[^3H]MK-801$ binding, and $GABA_A$ receptor bindings were analyzed by using $[^3H]muscimol\;and\;[^3H]flunitrazepam$ in rat brain slices. Rats were infused with ginsenoside Rc or Rg1 ($10\;{\mu}g/10{\mu}l/hr$, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML), The levels of $[^3H]MK-801$ binding were highly decreased in part of cortex and cingulated by ginsenoside Rc and Rgl. The levels of $[^3H]muscimol$ binding were strongly elevated in almost all regions of frontal cortex by the treatment of ginseoside Rc but decreased by ginsenoside Rg 1. However, the $[^3H]flunitrazepam$ binding was not modulated by ginsenoside Rc or ginsenoside Rgl infusion. These results suggest that prolonged infusion of ginsenoside could differentially modulate $[^3H]MK-801\;and\;[^3H]muscimol$ binding in a region-specific manner. Also, we investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rgl-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CAI area of hippocampus in Rgl-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rgl-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.

  • PDF

Screening of Antioxidative Components from Red Ginseng Saponin (홍삼 사포닌의 항산화활성 성분 Screening)

  • 김정선;김규원
    • Journal of Ginseng Research
    • /
    • v.20 no.2
    • /
    • pp.173-178
    • /
    • 1996
  • Aerobic cells are normally protected from the damage of free radicals by antioxidative on , zymes such as superoxide dismutase (SOD), catalase, glutathione (GSH) peroxidase, GSH S- transferase and GSH reductase which scavenge free radicals as well as nonenzymatic antioxidants such as ceruloplasmin, albumin and nonprotein-SH including GSH. The effects of each component (ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re, $Rb_1$, Rf, $Rh_1$ and $Rh_2$) of red ginseng on the antioxidative enzyme activities were investigated in the liver in order to screen antioxidative components of red ginseng. Ginsenoside $Rb_1$ and Rc showed a tendency to increase GSH peroxidase activity, while ginsenoside Rc significantly decreased Cu,Zn-SOD activity. Especially, ginsenoside $Rh_2$ significantly increased catalase activity. These results suggest that ginsenoside $Rh_2$ is an important active component among total saponins of red ginseng.

  • PDF

Analysis of major ginsenosides in various ginseng samples

  • Lee, Dong Gu;Lee, Ju Sung;Kim, Kyung-Tack;Kim, Hyun Young;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • The contents of major ginsenosides (ginsenosides Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, ginsenoside Rf, and ginsenoside Rg1) in ginseng cultivated in different areas in Korea, ginseng that underwent different cultivation processes and ages, and ginseng cultivated in different countries were determined using high-performance liquid chromatography equipped with UV/VIS detector. Ginsenoside Rc was the most abundant ginsenoside in all different ginseng samples. The highest total concentration of major ginsenosides was found in the ginseng cultivated in Jinan (0.931 mg/g) and 4-year grown red ginseng (1.785 mg/g). Major ginsenosides were the most abundant in Korean ginseng (1.264 mg/g), compared to those in Chinese and American ginseng. The results of this study showed the different contents of major ginsenosides in the ginseng samples tested and emphasized which sample could contain high yield of ginsenosides.

Effects of Ginsenosides on $GABA_A$ Receptor Channels Expressed in Xenopus Oocytes

  • Choi, Se-Eun;Choi, Seok;Lee, Jun-Ho;Paul J.Whiting;Lee, Sang-Mok;Nah, Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Ginsenosides, major active ingredients of Panax ginseng, are known to regulate excitatory ligand-gated ion channel activity such as nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides affect inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage-clamp technique. Among the eight individual ginsenosides examined, namely, $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$ and $Rg_2$, we found that Rc most potently enhanced the GABA-induced inward peak current ($I_{GABA}$). Ginsenoside Rc alone induced an inward membrane current in certain batches of oocytes expressing the $GABA_A$ receptor. The effect of ginsenoside Rc on $I_{GABA}$ was both dose-dependent and reversible. The half-stimulatory concentration ($EC_{50}$) of ginsenoside Rc was 53.2$\pm$12.3 $\mu$M. Both bicuculline, a $GABA_A$ receptor antagonist, and picrotoxin, a $GABA_A$ channel blocker, blocked the stimulatory effect of ginsenoside Rc on $I_{GABA}$. Niflumic acid (NFA) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), both $CI^{-1}$ channel blockers, attenuated the effect of ginsenoside Rc on I$I_{GABA}$. This study suggests that ginsenosides regulated $GABA_A$ receptor expressed in Xenopus oocytes and implies that this regulation might be one of the pharmacological actions of Panax ginseng.