• Title/Summary/Keyword: Glial cell line-derived neurotrophic factor

Search Result 13, Processing Time 0.025 seconds

Expression of Neural Cell Adhesion Molecule (NCAM) and Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Aganglionic Bowel of Hirschsprung's Disease (허쉬슈프렁병 환아의 무신경절 장관에서 Neural Cell Adhesion Molecule (NCAM) 과 Glial Cell Line-Derived Neurotrophic Factor (GDNF)의 발현)

  • Oh, Jung-Tak;Han, Ai-Ri;Son, Suk-Woo;Choi, Seung-Hoon;Han, Seok-Joo;Hwang, Eui-Ho;Yang, Woo-Ick
    • Advances in pediatric surgery
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • The pathophysiology of Hirschsprung's disease (HD) is not fully understood, but recent studies have disclosed that neural cell adhesion molecule (NCAM) and glial cell line-derived neurotrophic factor (GDNF) play important roles in the formation of aganglionic bowel of Hirschsprung's disease. To evaluate the roles of NCAM and GDNF in HD, immunohistochemical analysis was performed using formalin-fixed and paraffin-embedded tissue sections. On the basis of the results, we tried to evaluate them as diagnostic markers. The specimens were obtained from 7 patients with HD who underwent modified Duhamel operation. The diagnosis was based on the clinical findings and the absence of ganglion cells in the nerve plexuses by routine microscopy. NCAM immunoreactivity was found in the nerve plexuses and scattered nerve fibers in the smooth muscle layers of ganglionic segments. In aganglionic segments, the number of NCAM positive nerve fibers in the smooth muscle layers was significantly reduced compared with ganglionic segments. In two cases the nerve plexuses in aganglionic segments, NCAM was negligible. The smooth muscle cells showed diffuse immunoreactivity for GDNF and the staining intensity was not different in the aganglionic and ganglionic segments. However, higher expression of GDNF in the nerve plexus of the ganglionic segments was noted comparing to aganglionic segments. These data suggest that both NCAM and GDNF may play important roles in pathogenesis of Hirschsprung's disease and immunohistochemical staining for NCAM can be used as an ancillary diagnostic tool for HD.

  • PDF

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

Regulation of BDNF release in dopaminergic neurons

  • Jeon, Hong-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

Effects of Fetal Mesencephalic Cell Grafts on the Intrastriatal 6-hydroxydoapmine Lesioned Rats

  • Joo, Wan Seok;Nam, Eun-Joo;Im, Heh-ln;Jung, Jin-Ah;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • The effects of fetal mesencephalic cell grafts on the restoration of nigrostriatal dopaminergic function were studied in the intrastriatal 6-hydroxydopamine-lesioned rats. Four weeks after lesioning, transplantation of ventral mesencephalic cells from embryonic day 14 fetuses showed the number of tyrosine hydroxylase (TH) positive cells and fiber outgrowth in the grafted striatum, and significantly ameliorated symptomatic motor behavior of the animals, as determined by apomorphine-induced rotation. Furthermore, in substantia nigra pars compacta (SNc), the numbers of TH + cells and fibers were markedly restored. Dopamine content of ipsilateral SNc was close to that of contralateral SNc $(91.9{\pm}9.8%)$ in the transplanted animals, while the ratio was approximately 32% in sham-grafted animals. These results indicate that grafted cells restored the activity for the dopaminergic neurons located in SNc, although they were transplanted into striatum. In addition, we showed that the implanted fetal cells expressed high level of glial cell line-derived neurotrophic factor (GDNF), suggesting that the transplanted fetal cells might serve as a dopamine producer and a reservoir of neurotrophic factors. These results may be helpful in consideration of the therapeutic transplantation at early stage of PD.

Glial Cell Line-Derived Neurotrophic Factor, S-100 Protein and Synaptophysin Expression in Biliary Atresia Gallbladder Tissue

  • Gurunluoglu, Semra;Ceran, Canan;Gurunluoglu, Kubilay;Kocbiyik, Alper;Gul, Mehmet;Yildiz, Turan;Bag, Harika Gozukara;Gul, Semir;Tasci, Aytac;Bayrakci, Ercan;Akpinar, Necmettin;Cin, Ecem Serbest;Ates, Hasan;Demircan, Mehmet
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.2
    • /
    • pp.173-186
    • /
    • 2021
  • Purpose: Biliary atresia (BA) is a disease that manifests as jaundice after birth and leads to progressive destruction of the ductal system in the liver. The aim of this study was to investigate histopathological changes and immunohistochemically examine the expression of glial cell line-derived neurotrophic factor (GDNF), synaptophysin, and S-100 protein in the gallbladder of BA patients. Methods: The study included a BA group of 29 patients and a control group of 41 children with cholecystectomy. Gallbladder tissue removed during surgery was obtained and examined immunohistochemically and histopathologically. Tissue samples of both groups were immunohistochemically assessed in terms of GDNF, S-100 protein, and synaptophysin expression. Expression was classified as present or absent. Inflammatory activity assessment with hematoxylin and eosin staining and fibrosis assessment with Masson's trichrome staining were performed for tissue sample sections of both groups. Results: Ganglion cells were not present in gallbladder tissue samples of the BA group. Immunohistochemically, GDNF, synaptophysin, and S-100 expression was not detected in the BA group. Histopathological examination revealed more frequent fibrosis and slightly higher inflammatory activity in the BA than in the control group. Conclusion: We speculate that GDNF expression will no longer continue in this region, when the damage caused by inflammation of the extrahepatic bile ducts reaches a critical threshold. The study's findings may represent a missing link in the chain of events forming the etiology of BA and may be helpful in its diagnosis.

Epigenetic Regulation in the Brain after Spinal Cord Injury : A Comparative Study

  • Park, Bit-Na-Ri;Kim, Seok Won;Cho, Sung-Rae;Lee, Ji Yong;Lee, Young-Hee;Kim, Sung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.337-341
    • /
    • 2013
  • Objective : After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. Methods : Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. Results : The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). Conclusion : These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

High Resolution Genomic Profile of Neuro2a Murine Neuroblastoma Cell Line by Array-based Comparative Genomic Hybridization (고집적어레이 기반의 비교유전체보합법(CGH)을 통한 신경아세포종 Neuro2a 세포의 유전체이상 분석)

  • Do, Jin-Hwan;Kim, In-Su;Ko, Hyun-Myung;Choi, Dong-Kug
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.449-456
    • /
    • 2009
  • Murine Neuro-2a (N2a) cells have been widely used for the investigation of neuronal differentiation, trophic interaction and neurotoxic effects of various compounds and their associated mechanisms. N2a cells have many genomic variations such as gains or losses in DNA copy number, similar to other neuroblastoma cells, and no systematic or high-resolution studies of their genome-wide chromosomal aberrations have been reported. Presently, we conducted a systematic genome-wide determination of chromosomal aberrations in N2a cells using a high-throughput, oligonucleotide array-based comparative genomic hybridization (oaCGH) technique. A hidden Markov Model was employed to assign each genomic oligonucleotide to a DNA copy number state: double loss, single loss, normal, gain, double gain and amplification. Unlike most neuroblastoma cells, Mycn amplification was not observed in N2a cells. In addition, these cells showed gain only in the neuron-derived neurotrophic factor (NF), while other neurotrophic factors such as glial line-derived NF and brain-derived NF presented normal copy numbers. Chromosomes 4, 8, 10, 11 and 15 displayed more than 1000 aberrational oligonucleotides, while chromosomes 3, 17, 18 and 19 displayed less than 20. The largest region of gain was located on chromosome 8 and its size was no less than 26.7 Mb (Chr8:8427841-35162415), while chromosome 4 had the longest region of single deletion, with a size of 15.1 Mb (Chr4:73265785-88374165).

Hirschsprung's Disease: Etiology and Pathophysiology

  • Lee, Myung-Duk
    • Advances in pediatric surgery
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • Abnormal distribution of the enteric nerves such as adrenergic, cholinergic and peptidergic nerves may cause the functional obstruction in Hirschsprung's disease (HD). Although the sustained contraction of the aganglionic segment is the main pathophysiology of HD, the etiology and pathogenesis is not thoroughly understood, With the recent progress of molecular biology and genetics,a more detailed approach to the pathogenesis of the HD can be undertaken. In this review, the roles of the nitric oxide, nitric oxide synthase and interstitial cells of Cajal on smooth muscle relaxation, the effects of extracellular matrix, cell adhesion molecules, neurotrophic factors on the migration and maturation of the neural crest cells are described. In the section of genetic factors, familial occurrences, association of chromosomal abnormalities, RET gene, glial cell line-derived neurotrophic factor gene, endothelin-3 gene and endothelin-B receptor gene and their r elationships to HD is briefly reviewed.

  • PDF