• Title/Summary/Keyword: Glycine receptor

Search Result 52, Processing Time 0.021 seconds

Inhibitory Effects of Glycine on Morphine-Induced Hyperactivity, Reverse Tolerance and Postsynaptic Dopamine Receptor Supersensitivity in Mice

  • Shin, Kyung-Wook;Hong, Jin-Tae;Yoo, Hwan-Soo;Song, Sukgil;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1074-1078
    • /
    • 2003
  • The effects of glycine on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice was examined. A single administration of morphine (10 mg/kg, s.c.) induced hyperactivity as measured in mice. The morphine-induced hyperactivity was inhibited by pretreatment with glycine (100, 200 and 400 mg/kg, i.p.). In addition, it was found repeated administration of morphine (10 mg/kg, s.c.) to mice daily for 6 days caused an increase in motor activity which could be induced by a subsequent morphine dose, an effect known as reverse tolerance or sensitization. Glycine (100, 200 and 400 rng/kg, i.p.) also inhibited morphine-induced reverse tolerance. Mice that had received 7 daily repeated administrations of morphine also developed postsynaptic dopamine receptor supersensitivity, as shown by enhanced ambulatory activity after administration of apomorphine (2 mg/kg, s.c.). Glycine inhibited the development of postsynaptic dopamine receptor supersensitivity induced by repeated administration of morphine. It is suggested that the inhibitory effects of glycine might be mediated by dopaminergic (DAergic) transmission. Accordingly, the inhibition by glycine of the morphine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity suggests that glycine might be useful for the treatment of morphine addiction.

[${^3H}MK-801$ Binding to the Synaptic Membranes of Rat Forebrains: Age-related Regulation by Glutamate, Glycine and Spermine

  • Cho, Jung-Sook;Kong, Jae-Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.117-125
    • /
    • 1997
  • The N-methyl-D-aspartate (NMDA) receptor-mediated glutamatergic neurotransmission is involved in synaptic plasticity, developmental processes, learning and memory and many neuropathological disorders including age-related diseases. In the present study, regulation of the NMDA receptor properties by various ligands was investigated using $[^3H]MK-801$ binding studies in the synaptic membranes of young and aged rat forebrains. The binding in the presence of glutamate and glycine increased dramatically with growth between 1 and 6 weeks old, and thereafter declined gradually with aging. Glutamate, glycine or spermine respectively increased the binding with growth. Glutamate maintained the binding during aging, while glycine or spermine significantly decreased the binding in the aged brain. The maximum stimulation by glycine varied depending on the ages of brains. Greater sensitivity to glycine was observed at 1 week and 3 months and the sensitivity was significantly reduced in the aged brain. In contrast, spermine showed similar stimulation patterns in young and aged rats. These results indicated that the functional properties of the NMDA receptor-ion channel complex in young and aged rat forebrains are differentially regulated by agonists, and the reduction of the receptor function with normal aging may be, in some degree, due to the reduction of the receptor sensitivity to glycine.

  • PDF

Distinct $[^3H]$MK-801 Binding Profiles with the Agonist, Partial Agonist, and Antagonist Acting at the Glycine Binding Site of the N-Methyl-D-Aspartate Receptor

  • Cho, Jung-sook;Park, No-Sang;Kong, Jae-Yang
    • Biomolecules & Therapeutics
    • /
    • v.4 no.2
    • /
    • pp.196-201
    • /
    • 1996
  • The N-methyl-D-aspartate (NMDA) receptor-ion channel complex is activated by the simultaneous presence of L-glutamate and glycine, allowing the binding of MK-801 to the phencyclidine (PCP) site of the receptor. The $[^3H]$MK-801 binding assay system was established for determination of pharmacological functions of test compounds acting at the glycine site of the receptor. The binding in the presence of 0.1 $\mu$M L-glutamate was increased by an agonist (glycine) in a dose-dependent fashion, while decreased by either partial agonist (R-(+)-HA-966) or antagonist (5,7-dichlorokynurenic acid: 5,7-DCKA). To distinguish partial agonism from antagonism, various concentrations of 7-chlorokynurenic acid (7-CKA) were added in the assay to eliminate the interference of the endogenous glycine present in the membrane preparations. The bindings in the presence of L-glutamate (0.1$\muM$) and 7-CKA (1, 5, or 10$\muM$) were increased by R-(+)-HA-966. Being a weak partial agonist, the extent of potentiation was much less than that by the agonist. These binding profiles were clearly distinguishable from those by the antagonist, 5,7-DCKA, which exhibited no intrinsic activity. The binding assays established in the present study are a useful system to classify ligands acting at the glycine site of the NMDA receptor by their pharmacological functions.

  • PDF

GLYCINE 수송체 - 신경운동성 질환과의 연계성

  • 김경만
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.11a
    • /
    • pp.34-35
    • /
    • 1993
  • Glycine은 GABA와 함께 뇌에 작용하는 중요한 억제성 신경전달 물질이다. GABA가 대뇌등에서 중요한 역할을 하는 반면, GLYCINE은 연수, 척수, 간뇌에 특히 다량 존재한다. GLYCINE은 GLYCINE RECEPTOR에 작용하여 수용체와 연결된 chloride channel의 conductance를 증가시킴으로써 target세포의 활성을 억제한다. 그러므로, glycine의 신경전달체계에 이상이 오면 spastic mouse등에서 볼수 있는 것처럼 neuromuscular disorder가 유발된다. 신경전달 물질은 presynaptic 세포에 자극이 오면 synaptic cleft로 분비가 된후 presynaptic이나 Postsynaptic 세포에 위치한 수용체에 작용하여 생리 활성을 나타내거나, 분해효소에 의해서 생리활성이 없는 물질로 바뀌든지, presynaptic cell에 위치한 transporter(수송체)에 의해서 presynaptic 세포로 reuptake되서 cycle를 끝낸다. Glycine의 경우는 synaptic cleft로 분비된 후 glycine transporter에 의해서 reuptake된다. 그러므로 glycine transporter의 활성 정도는 sysnapse내의 glycine의 농도를 조절하며 더 나아가 glycine이 glycine receptor에 작용하는 시간에 영향을 줌으로써 target 세포의 활성정도를 결정한다.

  • PDF

Synthesis of 7,8-Dichloro-6-Nitro-1H-1,5-Benzodiazephine-2,4-(3H, 5H)-dione as a potential NMDA Receptor Glycine Site Antagonist

  • Hwang, Ki-Jun
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2000
  • An efficient procedure for the preparation of 7,8-dichloro-6-nitro-1H-1,5-benzodiazepine-2,4-(3H, 5H)-dione(7) as a potential lead compound for the NMDA receptor glycine binding site antagonist, starting from readily available 4,5-dichloro-2-nitroaniline(8), is described. The key step in the synthesis involves the cyclization of malonic ester amide 10 to compound 11.

  • PDF

Synthesis of 4,6-Dichloro-3-[(1-N-Arylaminocarbonyl)-Hydrazono]- 1,3-Dihydro-Indole-2-One as a Potential NMDA Receptor Glycine Site Antagonist

  • Hwang, Ki-Jun;Lee, Tae-Suk
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.112-115
    • /
    • 2000
  • A synthetic procedure for the preparation of indole-2,3-dione derivatives 6 as a potential NMDA receptor glycine site antagonist with improved pharmacological profile compared with 2-carboxyindole derivative 5, starting from readily available 3,5-dichloroaniline (7), is described.

  • PDF

The Effect of NMDA/glycine Receptor Antagonist, 7-Chlorokynurenic Acid on Cultured Astrocytes Damaged by Ischemia-like Condition

  • Jung, In-Ju
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • I evaluated the protective effect of N-methyl-D-aspartate (NMDA)/glycine receptor antagonist, 7-chlorokinurenic acid (CKA) on cultured mouse astrocytes damaged by ischemia-like condition (ILC). The protective effect of CKA was assessed by cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD)-like activity and lipid peroxidation. To examine the effect of CKA on the cell apoptosis, the expression and the activity of caspase 3 were assessed by Western blotting. CKA increased the cell viability decreased by ILC. CKA also decreased the LDH activity and antioxidative effects such as SOD-like activity and inhibitory activity of lipid peroxidation. In addition, CKA suppressed the expression of caspase 3 associated with apoptosis, and increased the cell viability by the decrease of caspase 3 activity as like the caspase 3 inhibitor, Av-DVED-MED. From these results, these results suggest that ILS induces cell cytotoxicity in cultured astrocytes and CKA, NMDA/glycine receptor antagonist, is effective on the prevention of the cytotoxicity due to ILS by the antioxidative effect and the inhibition of apoptosis.

  • PDF

Effects of Nitric Oxide on Inhibitory Receptors of Rod Bipolar Cells of Rat Retina

  • Park, No-Gi;Bai, Sun-Ho;Jung, Chang-sub;Chun, Mynng-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.347-352
    • /
    • 2005
  • The effects of nitric oxide (NO) on inhibitory neurotransmitter receptors and some types of inhibitory receptors in dissociated rod bipolar cell (RBC) were investigated. In the whole cell voltage-clamping mode, the gamma-aminobutyric acid (GABA) activated current showed both sustained and transient components. GABA activated transient current was fully blocked by bicuculine, a $GABA_A$ receptor antagonist. The cis-4-aminocrotonic acid (CACA), a $GABA_C$ receptor agonist, evoked the sustained current that was not blocked by bicuculline (BIC). Glycine activated the transient current. These results indicate that the RBCs possess $GABA_A$, $GABA_C$, and glycine inhibitory receptors. Sodium nitroprusside (SNP), a NO analogue, reduced the currents activated by $GABA_A$ receptor only, however, did not reduce the currents activated by either $GABA_C$ or glycine receptors. This study signifies further that only NO depresses the fast inhibitory response activated by $GABA_A$ receptor in RBC. We, therefore, postulate that NO might depress the light-on/off transient inhibitory responses in RBCs in the rat retina.

4-Substituted-kynurenic Acid Derivatives:A Novel Class of NMDA Receptor Glycine Site Antagonists

  • Kim, Ran-Hee;Chung, Yong-Jun;Lee, Chang-Woo;Jae, Yang-Kong;Young, Sik-Jung;Seong, Churl-Min;Park, No-Sang
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.351-357
    • /
    • 1997
  • A series of 4-substituted-kynurenic acid derivatives possessing several different substituents at C4-position which are consisted of both a flexible propyloxy chain and an adjunct several type of carbonyl groups has been synthesized and evaluated for their in vitro antagonist activity at the glycine site on the NMDA receptor. Of them, N-benzoylthiourea 15c and N-phenylthiourea 15a were found to have the best in vitro binding affinity with $IC_{50}$ of 3.95 and $6.04{\mu}M$, respectively. On the other hand, in compounds 12a-c and 13 the displacement of a thiourea group to an amide or a carbamate caused a significant decrease of the in vitro binding affinity. In the SAR study of the 4-substituted kynurenic acid derivatives, it was realized that the terminal substitution pattern on a flexible C4-propyloxy chain of kynurenic acid nucleus significantly influences on the binding affinity for glycine site; the binding affinity to the NMDA receptor might be increased by the introduction of a suitable electron rich substituent at C4 of kynurenic acid nucleus.

  • PDF

Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Yang, Eun-Ju;Park, Soo-Joung;Han, Seong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.285-289
    • /
    • 2011
  • Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated $Na^+$ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a $GABA_A$ receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and $GABA_A$ receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.