• Title/Summary/Keyword: Ground Operations

Search Result 303, Processing Time 0.032 seconds

Satellite Ground Track Display on a Digitized World Map for the KOMPSAT-2 Mission Operations

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.246-249
    • /
    • 2005
  • Satellite ground track display computer program is designed and implemented for the KOMPSAT-2 mission operations. Digitized world map and detailed Korean map is realized with zoom and pan capability. The program supports real-time ground trace and off-line satellite image planning on the world map. Satellite mission timeline is also displayed with the satellite ground track for the visualized mission operations. In this paper, the satellite ground track display is described in the aspect of the functional requirements, design, and implementation.

  • PDF

13M ANTENNA UPGRADE PLAN FOR FUTURE MISSION

  • Park, Durk-Jong;Yang, Hyung-Mo;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.493-495
    • /
    • 2007
  • Future sub-meter resolution LEO missions require simultaneous dual-polarization downlink and/or multiple channel downlinks in single polarization. Especially, dual-polarization is needed to cope with bandwidth limitation due to high speed data transmission. Current KARI 13m X-Band antenna system needs to be upgraded to cope with such downlink schemes. This paper describes brief discussions on engineering work regarding how to meet the new requirements with minimum impact on current system as well as C&M (Control and Monitoring) software.

  • PDF

KOMPSAT SATELLITE LAUNCH AND DEPLOYMENT OPERATIONS

  • Baek, Myung-Jin;Chang, Young-Keun;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 1999
  • In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  • PDF

DEVELOPMENT OF THE KOMPSAT-2 SATELLITE MISSION CONTROL SYSTEM

  • Lee Byoung-Sun;Lee Sanguk;Mo Hee-Sook;Cho Sungki;Jung Won Chan;Kim Myungja;Kim In-Jun;Kim Tae-Hee;Joo Inone;Hwang Yoola;Kim Jaehoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.300-303
    • /
    • 2004
  • KOMPSAT-2 satellite mission operations and control system has been developed by ETRI. The system functional architecture, analysis and design, implementation, and tests are presented in this paper.

  • PDF

A study on Deep Operations Effect Analysis for Realization of Simultaneous Offense-Defence Integrated Operations (공방동시통합작전 구현을 위한 종심작전 효과분석 연구)

  • Cho, Jung Keun;Yoo, Byung Joo;Han, Do Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2021
  • Ground Component Command (GCC) has been developing operational planning and execution systems to implement "Decisive Integrated Operations", which is the concept of ground operations execution, and achieved remarkable results. In particular, "Simultaneous Offense-Defense Integrated Operations" is developed mainly to neutralize enemies in deep areas and develop favorable conditions for the allies early by simultaneously attacking and defending from the beginning of the war. On the other hand, it is limited to providing scientific and reasonable support for the commander's decision-making process because analyzing the effects of the deep operation with existing M&S systems is impossible. This study developed a model for analyzing the effects of deep operations that can be used in the KJCCS. Previous research was conducted on the effects of surveillance, physical strike, and non-physical strike, which are components of deep operations to find the characteristics and limitations and suggest a research direction. A methodology for analyzing the effects of deep operations reflecting the interactions of components using data was then developed by the GCC, and input data for each field was calculated through combat experiments and a literature review. Finally, the Deep operations Effect CAlculating Model(DECAM) was developed and distributed to the GCC and Corps battle staff during the ROK-US Combined Exercise. Through this study, the effectiveness of the methodology and the developed model were confirmed and contribute to the development of the GCC and Corps' abilities to perform deep operations.

Implementation and Evaluation of the Wibro-based Location Identification System for Air Base Protection Force (Wibro 기반 비행기지 방어전력 위치식별체계 구축 및 실험)

  • Pyo, Sang-Ho;Koo, Jung;Ko, Young-Bae;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.306-314
    • /
    • 2012
  • This paper proposes a new system to maximize efficiency of Air Base Protection Operations through the development of location identification software. The Wibro-based location identification system for Air Base Protection Force offers Blue Ground Force digitalized character message which is not exposed to enemy. Also, it is possible to automatically provide the location of Blue Ground Force to Air Base Ground Operations Center. The test result proves that this system is very helpful when Air Base Protection Force executes Air Base Protection Operations.

ANALYSIS ON RECEIVING PERFORMANCE FOR KOMPSAT-5 X-BAND IMAGE DATA

  • Park, Durk-Jong;Kang, Chi-Ho;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.208-211
    • /
    • 2008
  • Band-limited filtering will be applied to remove interference resulted from two neighbored channels in the transmission of KOMPSAT-5 X-Band image data. In that case, receiver in ground station should prepare righteous matched filter to avoid huge BER degradation depending on the matched filter of COTS receiver. As an effort to simulate the bandlimited filtering, test filter was designed and manufactured on the basis of main specification for output filter of KOMPSAT-5 satellite. Consequently, 1.8dB of BER degradation was measured at the output of test band-pass filter, but the degradation was downsized up to 0.4dB thanks to the adaptive matched filter of COTS receiver.

  • PDF

RF Compatibility Test using RF Suitcase (이동형 RF 시험장비를 이용한 RF 호환성 시험)

  • Kim, Eung-Hyeon;Jeong, Dae-Won;Kim, Hui-Seop;Im, Jeong-Heum;Lee, Sang-Jeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • A satellite and ground stations which are developed in a program are tested whether the interface between the satellite and ground is well established before satellite operations. These compatibility tests are performed when the satellite is connected with the ground stations after all satellite and ground stations requirements are verified. The content of the RF compatibility test is to check whether the interface requirements which are described on the Interface Control Document are well developed. During the early operation phase and tentative contingency operations of the satellite, KARI ground station uses other oversea ground stations which are located worldwide according to contract between the KARI and the contractor. Since oversea ground stations were not developed for the designated space program, system integrator should check whether the oversea ground stations are satisfied with interface requirements. Using the RF suitcase, RF interface and the content of RF communication can directly be verified during RF compatibility test on oversea ground station without KARI ground station's support. The RF compatibility test using RF suitcase was performed oversea ground stations as well as KARI ground station located on Korea. The content of RF compatibility test was standardized in order to be used at any oversea ground stations, especially fitted for the operations concept of launch and early operations phase. The test content would be RF characteristics, protocol, command loop test, telemetry loop test, and ground station interface test.

  • PDF

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

DIVERSITY DESIGN FOR SENSOR DATA ACQUISITION AT COMS SOC

  • Park, Durk-Jong;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.479-481
    • /
    • 2007
  • COMS will transmit its observed data, Sensor Data, through L-Band with linear polarization. To avoid link loss caused by polarization discrepancy between satellite and SOC DATS, the L-Band antenna at SOC DATS should be linearly polarized. However, SOC DATS is supposed to share single antenna with SOC TTC, so the antenna should be circularly polarized. To cope with about 3dB loss, SOC DATS is designed to receive Sensor Data through two orthogonal circular polarizations, RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). Eventually, SOC DATS can obtain 2.6dB of combining gain through diversity combiner in MODEM/BB. This paper presents the verification on the diversity combining of SOC DATS with test configuration and results in depth.

  • PDF