• Title/Summary/Keyword: Guanylyl cyclase

Search Result 27, Processing Time 0.018 seconds

Alteration of Nitric Oxide Synthase and Guanylyl Cyclase Activity in Rats with Ischemia/Reperfusion Renal Injury

  • Bae, Eun-Hui;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.337-341
    • /
    • 2006
  • The present study was designed to investigate the protein expression of nitric oxide synthase (NOS) and guanylyl cyclase (GC) activity in ischemia/perfusion (I/R) renal injury in rats. Renal I/R injury was experimentally induced by clamping the both renal pedicle for 40 min in Sprague-Dawley male rats. The renal expression of NOS isoforms was determined by Western blot analysis, and the activity of guanylyl cyclase was determined by the amount of guanosine 3', 5'-cyclic monophosphate (cGMP) formed in response to sodium nitroprusside (SNP), NO donor. I/R injury resulted in renal failure associated with decreased urine osmolality. The expression of inducible NOS (iNOS) was increased in I/R injury rats compared with controls, while endothelial NOS (eNOS) and neuronal NOS (nNOS) expression was decreased. The urinary excretion of NO metabolites was decreased in I/R injury rats. The cGMP production provoked by SNP was decreased in the papilla, but not in glomerulus. These results indicate an altered regulation of NOS expression and guanylyl cyclase activity in I/R-induced nephropathy.

Diminished Vascular Guanylyl Cyclase Activity in Deoxycorticosterone Acetate-Salt Hypertension

  • Lee, Jong-Un;Hong, Jung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.379-383
    • /
    • 2000
  • Pathophysiological implications of the vascular nitric oxide (NO)/cGMP pathway in hypertension were investigated. Sprague-Dawley rats were made deoxycorticosterone acetate (DOCA)-salt hypertensive for six weeks. The protein expression of endothelial constitutive NO synthase (ecNOS) and the tissue content of NO were determined in the thoracic aorta. The protein expression and catalytic activity of soluble guanylyl cyclase (GC) were also determined. Systolic blood pressure measured on the day of experiment was significantly higher in the experimental group than in the control. The hypertension was associated with decreases in the vascular tissue content of NO metabolites, concomitantly with the expression of ecNOS proteins. The protein expression of GC was not affected, while its catalytic activity was significantly decreased in hypertension. These results indicate that the high blood pressure is associated with a decreased activity of vascular NO/cGMP pathway in DOCA-salt hypertension.

  • PDF

Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons

  • Jin, Yun-Ju;Kim, Jun;Kwak, Ji-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents ($I_{cap}$). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on $I_{cap}$. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on $I_{cap}$. The PKG inhibitor KT5823 prevented the inhibition of $I_{cap}$ by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.

Effect of OQ21 and Melatonin on Lipopolysaccharide-Induced Oxidative Stress in Rat Brain (흰쥐 뇌에서의 Lipopolysaccharide-유도 산화적 스트레스에 대한 OQ21과 Melatonin의 작용)

  • Bae Mee Kyung;Choi Shinkyu;Ko Moon-Jeong;Ha Hun-Joo;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.347-354
    • /
    • 2005
  • Lipopolysaccharide (LPS) induces synthesis of several inflammatory cytokines and nitric oxide (NO). NO in brain is involved not only in the regulation of important metabolic pathways via intracellular cyclic GMP-dependent path­ways, but also in neurotoxic damage by reacting with superoxide ion leading to form peroxynitrite radical. Oxidative stress has suggested to be related to the inhibition of NO synthase/cyclic GMP pathway. OQ21 is a new fluorinated quinone compound that is recently known to have inhibitory effects on both NO synthase (NOS) and guanylyl cyclase (GC). In this study, we examined effects of OQ21, other known NOS or GC inhibitors, or an antioxidant, melatonin, on the oxidative stress produced by LPS in rat brain. Oxidative stress was observed by using the 2',7'-dichlorofluorescin diacetate to measure intra-cellular reactive oxygen species (ROS) production and by measuring the formation of thiobarbituric acid reactive substances to measure lipid peroxidation. LPS induced significant increase in both ROS produdction and lipid peroxidation in all brain regions tested (striatum, hippocampus and cortex), which were dissected 6hr after intraperitoneal administration of LPS to rats. Direct striatal injection of two NOS inhibitors, N-nitro-L-arginine methyl ester and diphenyleneiodonium, or a GC inhibitor, IH-[1,2,4]oxadiazolo[4,3-a]quinoxaline-l-one, produced no significant ROS increase. However, OQ21 enhanced ROS formation in striatal tissues from LPS-treated rats. Melatonin decreased LPS-induced ROS formation and decreased ROS formation increased by OQ21 in striatum of LPS-treated rats.

Altered Regulation of Renal Nitric Oxide and Atrial Natriuretic Peptide Systems in Lipopolysaccharide-induced Kidney Injury

  • Bae, Eun-Hui;Kim, In-Jin;Ma, Seong-Kwon;Lee, Jong-Un;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.273-277
    • /
    • 2011
  • Nitric oxide (NO) and atrial natriuretic peptide (ANP) may induce vascular relaxation by increasing the production of cyclic guanosine monophosphate (cGMP), an important mediator of vascular tone during sepsis. This study aimed to determine whether regulation of NO and the ANP system is altered in lipopolysaccharide (LPS)-induced kidney injury. LPS (10 $mg{\cdot}kg^{-1}$) was injected in the tail veins of male Sprague-Dawley rats; 12 hours later, the kidneys were removed. Protein expression of NO synthase (NOS) and neutral endopeptidase (NEP) was determined by semiquantitative immuno-blotting. As an index of synthesis of NO, its stable metabolites (nitrite/nitrate, NOx) were measured using colorimetric assays. mRNA expression of the ANP system was determined by real-time polymerase chain reaction. To determine the activity of guanylyl cyclase (GC), the amount of cGMP generated in response to sodium nitroprusside (SNP) and ANP was calculated. Creatinine clearance decreased and fractional excretion of sodium increased in LPS-treated rats compared with the controls. Inducible NOS protein expression increased in LPS-treated rats, while that of endothelial NOS, neuronal NOS, and NEP remained unchanged. Additionally, urinary and plasma NOx levels increased in LPS-treated rats. SNP-stimulated GC activity remained unchanged in the glomerulus and papilla in the LPS-treated rats. mRNA expression of natriuretic peptide receptor (NPR)-C decreased in LPS-treated rats, while that of ANP and NPR-A did not change. ANP-stimulated GC activity reduced in the glomerulus and papilla. In conclusion, enhancement of the NO/cGMP pathway and decrease in ANP clearance were found play a role in the pathogenesis of LPS-induced kidney injury.

The Vasodilating Mechanism of Sodium Nitroprusside and Forskolin on Phorbol dibutyrate-Induced Contractions in Rat Aorta (Sodium nitroprusside와 Forskolin의 Phorbol ester 수축에 대한 혈관이완작용의 기전)

  • Ahn, Hee-Yul
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The objectives of this study is to compare the inhibitory mechanism of sodium nitroprusside and forskolin on the phorbol ester, activator of protein kinase C (PKC), -induced contractions in rat aorta. $0.1\;{\mu}M$ phorbol dibutyrate (PDBu) induced sustained contractions and increased phosphorylations of myosin light chain (MLC) time-dependently. At 30 min, the contractions and phosphorylations of MLC by PDBu were augmented maximally and remained constant. Moreover, $^{45}Ca^{2+}$ uptake was increased 30 min after PDBu stimulation from resting values. Sodium nitroprusside which activates guanylyl cyclase followed by increasing cGMP, inhibited the PDBu-induced contractions concentration-dependently. On the other hand, forskolin which activates adenylyl cyclase followed by increasing cAMP, also inhibited the PDBu-induced contractions concentration-dependently. However, sodium nitroprusside was more potent to inhibition of the PDBu-induced contractions than forskolin. Sodium nitroprusside inhibited $^{45}Ca^{2+}$ uptake by PDBu stimulation. Forskolin also inhibited $^{45}Ca^{2+}$ uptake by PDBu stimulation. Sodium nitroprusside and forskolin inhibited the phosphorylations of MLC by PDBu, respectively. However, sodium nitroprusside was more potent to inhibition of phosphorylations of MLC by PDBu than forskolin. From these results, Sodium nitroprusside via cGMP or forskilin via cAMP may reduce myoplasmic $Ca^{2+}$ followed by suppression of phosphorylations of MLC of PKC-mediated contractions, which results in vasodilation. However, cGMP may play a role more importantly than cAMP on the regulation of protein kinase C-mediated contraction in vascular smooth muscle.

  • PDF

Effect of $N^G$-nitro-L-arginine methyl ester and Methylene Blue on the Endotoxin-induced Vascular Hyporesponsiveness (세균 내독소 유발 혈관 저반응성에 대한 $N^G$-nitro-L-arginine methyl ester와 Methylene blue의 영향)

  • Choi, Hyoung-Chul;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon;Sohn, Uy-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.337-349
    • /
    • 1997
  • This study was undertaken to examine the intensity of involvement of inducible nitric oxide synthase (iNOS) and cyclic GMP signal transduction pathway as one of the mechanisms of vaso-relaxative action of bacterial lipopolysaccharide (LPS) on the canine femoral artery strips. Canine femoral arteries were isolated and spiral strips of 10 mm long and 2 mm wide were made in the Tyrode solution of $0-4^{\circ}C$. The strips were prepared for isometric myography in Biancani's isolated muscle chamber containing 1 ml of Tyrode solution, which was maintained with pH 7.4 by aeration with 95% $O_2$/5% $CO_2$ at $37^{\circ}C$ and nitric oxide (NO) production was measured simulltaneously with isolated nitric oxide meter. LPS induced NO production, suppressed the phenylephrine (PE) induced contraction and enhanced the acetylcholine (ACh) induced relaxation. $N^G$-nitro-L-arginine methyl ester (L-NAME), an NOS inhibitor, methylene blue, a guanylyl cyclase inhibitor, potentiated PE induced contraction and suppressed ACh induced relaxation on the LPS treated strips. The inhibitory potency of methylene blue for LPS induced vascular hyporesponsiveness was stronger than that of L-NAME. These results suggest that in canine femoral artery, both iNOS and cyclic GMP signal trnasduction pathway are related with LPS induced vascular hyporeponsiveness, but in minor with iNOS and in major with cyclic GMP signal trnasduction pathway.

  • PDF

Effect of Soumin Seonghyangjeongkisan Extract on Blood Pressure and Regional Cerebral Blood Flow in Rats (소음인(少陰人) 성향정기산(星香正氣散)이 백서(白鼠)의 혈압(血壓) 및 국소뇌혈류량(局所腦血流量)에 미치는 영향(影響))

  • Lee, Ki-ju;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.12 no.1
    • /
    • pp.228-239
    • /
    • 2000
  • 1. Purpose : For many years, Soumin Seonghyangjeongkisan(少陰人 星香正氣散, SJ) has been used in Sasang(四象) constitutional medicine as a therapeutic agent for cerebral disease. The effects of SJ on the vascular system is not well-know. The purpose of this study is to make it clear the effects of SJ and composing drugs on blood pressure(BP) and regional cerebral blood flow(rCBF). 2. Method : We measured BP with Pressure Transducer, rCBF with Laser-Doppler flowmeter. Propranolo and methylene blue were used to determine the mechanisms of SJ effects. 3. Results and Conclusion : BP was not affected by SJ in rats, and rCBF was significantly increased by SJ in rats. rCBF was increased by Folium Perillae(蘇葉), Rhizoma Atractylodis(蒼朮), Pericarpium Arecae(大腹皮) and Rhizoma Arisaematic(南星), but decreased by Radix Saussurea(木香) in rats. The increase of rCBF is mediated by adrenergic ${\beta}-receptor$ and guanylyl cyclase which is enzyme producing cyclic GMP.

  • PDF

Effect of Taeumin Chungsimyoinjatang Extract on Blood Pressure and Regional Cerebral Blood Flow in Rats (태음인(太陰人) 청심연자탕(淸心連子湯)이 백서(白鼠)의 혈압(血壓) 및 국소뇌혈류량(局所腦血流量)에 미치는 영향(影響))

  • Park, Jae-hyung;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.12 no.1
    • /
    • pp.216-227
    • /
    • 2000
  • 1. Purpose For many years, Taeumin Chungsimyoinjatang(太陰人 淸心蓮子湯, CS) has been used in Sasang(四象) constitutional medicine as a therapeutic agent for cerebral disease. The effects of CS on the vascular system is not well-known. The purpose of this study is to make it clear the effects of SJ and composing drugs on blood pressure(BP) and regional cerebral blood flow(rCBF). 2. Method We measured BP with Pressure Transducer, rCBF with Laser-Doppler flowmeter. Propranolol and methylene blue were used to determine the mechanisms of CS effects. 3. Results and Conclusion BP was not affected by CS in rats, and rCBF was significantly increased by CS in rats. rCBF was increased by Nelumbinis Semen(蓮于肉), Ophiopogonis Radix(麥門冬), Asparagi Radix(天門冬), Polygalae Radix(遠志), Zizyphi Spinosae Semen(酸棗仁), Longnae Arillus(龍眼肉), Raphani Semen, Chrysanthemi Flos(甘菊) in rats. The increase of rCBF is mediated by adrenergic ${\beta}$- receptor and guanylyl cyclase which is enzyme producing cyclic GMP.

  • PDF

A Study of Medicinal Plants for Applications in Functional Foods 1. Effects of Schizandrae fructus on the Regional Cerebral Blood Flow and Blood Pressure in Rats (기능성 식품으로의 활용을 위한 한약자원에 관한 연구 1. 오미자 열수추출물이 흰쥐의 국소 뇌혈류량과 혈압에 미치는 영향)

  • 박성혜;한종현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • The purpose of this study was to measure the changes of regional cerebral blood flow (rCBF) and blood pressure (BP) in rats, following the intravenous injection of Schizandrae fructus water extract. The measurement was continually monitored by laser-doppler flowmeter and pressure tranducer in anesthetized adult Sprague-Dawley rats for 2 hours to 2 hours and a half through the data acquisition system composed of MacLab and Macintosh computer. The result of this experiment was as followed. Schizandrae fructus increased the changes of rCBF in rats significantly. The rCBF of Schizandrae fructus did not change by pretreated propranolol, atropine, L-NNA and indomethacin. But the rCBF of Schizandrae fructus was increased by pretreated methylene blue. Schizandrae fructus decreased the changes of BP, significantly. The BP of Schizandrae fructus did not change by pretreated propranolol, atropine, L-NNA and indomethacin. But the BP of Schizandrae fructus was decreased by pretreated methylene blue. There results indicated that Schizandrae fructus can increase the rCBF and decrease the BP, that is related to guanylyl cyclase activity.