• Title/Summary/Keyword: H%2A-algebra

Search Result 105, Processing Time 0.025 seconds

Poisson Banach Modules over a Poisson C*-Algebr

  • Park, Choon-Kil
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.529-543
    • /
    • 2008
  • It is shown that every almost linear mapping h : $A{\rightarrow}B$ of a unital PoissonC*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorph when $h(2^nuy)\;=\;h(2^nu)h(y)$ or $h(3^nuy)\;=\;h(3^nu)h(y)$ for all $y\;\in\;A$, all unitary elements $u\;\in\;A$ and n = 0, 1, 2,$\codts$, and that every almost linear almost multiplicative mapping h : $A{\rightarrow}B$ is a Poisson C*-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x for all $x\;\in\;A$. Here the numbers 2, 3 depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. We prove the Cauchy-Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-algebra.

ACTIONS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS AND INVARIANT ALGEBRAS

  • Min, Kang-Ju;Park, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • Let H be a finite dimensional Hopf algebra over a field k, and A be an H-module algebra over k which the H-action on A is D-continuous. We show that $Q_{max}(A)$, the maximal ring or quotients of A, is an H-module algebra. This is used to prove that if H is a finite dimensional semisimple Hopf algebra and A is a semiprime right(left) Goldie algebra than $A#H$ is a semiprime right(left) Goldie algebra. Assume that Asi a semiprime H-module algebra Then $A^H$ is left Artinian if and only if A is left Artinian.

  • PDF

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.91-121
    • /
    • 2014
  • Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

THE GENERALIZED WITT ALGEBRAS USING ADDITIVE MAPS I

  • Nam, Ki-Bong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.233-238
    • /
    • 1999
  • Kawamoto generalized the Witt algebra using F[${X_1}^{\pm1},....{X_n}^{\pm1}$] instead of F[x1,…, xn]. We construct the generalized Witt algebra $W_{g,h,n}$ by using additive mappings g, h from a set of integers into a field F of characteristic zero. We show that the Lie algebra $W_{g,h,n}$ is simple if a g and h are injective, and also the Lie algebra $W_{g,h,n}$ has no ad-digonalizable elements.

  • PDF

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.323-333
    • /
    • 2010
  • The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

POISSON BRACKETS DETERMINED BY JACOBIANS

  • Ahn, Jaehyun;Oh, Sei-Qwon;Park, Sujin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.357-365
    • /
    • 2013
  • Fix $n-2$ elements $h_1,{\cdots},h_{n-2}$ of the quotient field B of the polynomial algebra $\mathbb{C}[x_1,x_2,{\cdots},x_n]$. It is proved that B is a Poisson algebra with Poisson bracket defined by $\{f,g\}=det(Jac(f,g,h_1,{\cdots},h_{n-2})$ for any $f,g{\in}B$, where det(Jac) is the determinant of a Jacobian matrix.

Weak positive implicative hyperBCK-ideal

  • Kim, Y.H.;Namkoong, Y.M.;T.E. Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.243-246
    • /
    • 2003
  • In this paper we define a weak positive implicative hyperBCK-ideal of hyperBCK-algebra. Also we investigate that every positive implicative hyperBCK-algebra is a positive implicative hyperK-algebra and then we prove that every positive implicative hyperK-algebra is a weak positive implicative hyperk-algebra.