• Title/Summary/Keyword: HERG channel

Search Result 11, Processing Time 0.028 seconds

Inhibitory Actions of HERG Currents by the Immunosuppressant Drug Cyclosporin A

  • Lee, Seung-Ho;Hahn, Sang-June;Min, Gye-Sik;Kim, Ji-Mok;Jo, Su-Hyun;Choe, Han;Choi, Bok-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.291-297
    • /
    • 2011
  • The effect of cyclosporin A (CsA), an immunosuppressant, on human ether-a-go-go-related gene (HERG) channel as it is expressed in human embryonic kidney cells was studied using a whole-cell, patch-clamp technique. CsA inhibited the HERG channel in a concentration-dependent manner, with an $IC_{50}$ value and a Hill coefficient of $3.17{\mu}m$ and 0.89, respectively. Pretreatment with cypermethrine, a calcineurin inhibitor, had no effect on the CsA-induced inhibition of the HERG channel. The CsA-induced inhibition of HERG channels was voltage-dependent, with a steep increase over the voltage range of the channel opening. However, the inhibition exhibited voltage independence over the voltage range of fully activated channels. CsA blocked the HERG channels predominantly in the open and inactivated states rather than in the closed state. Results of the present study suggest that CsA acts directly on the HERG channel as an open-channel blocker, and it acts independently of its effect on calcineurin activity.

Functional Abnormalities of HERG Mutations in Long QT Syndrome 2 (LQT2)

  • Hiraoka, Masayasu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.367-371
    • /
    • 2001
  • The chromosome 7-linked long QT syndrome (LQT2) is caused by mutations in the human ether-a- go-go-related gene (HERG) that encodes the rapidly activating delayed rectifier $K^+$ current, $I_{Kr},$ in cardiac myocytes. Different types of mutations have been identified in various locations of HERG channel. One of the mechanisms for the loss of normal channel function is due to membrane trafficking of channel protein. The decreased channel function in some deletion mutants appears to be due to loss of coupling with wild type HERG to form the functional channel as the tetramer. Most of missense mutants with few exceptions could interact with wild type HERG to form functional tetramer and caused dominant negative suppression with co-injection with wild type HERG showing variable effects on current amplitude, voltage dependence, and kinetics of activation and inactivation. Two missense mutants at pore regions of HERG found in Japanese LQT2 (A614V and V630L) showed accentuated inward rectification due to a negative shift in steady-state inactivation and fast inactivation. One mutation in S4 region (R534C) produced a negative shift in current activation, indicating the S4 serving as the voltage sensor and accelerated deactivation. The C-terminus mutation, S818L, could not express the current by mutant alone and did not show dominant negative suppression with co-injection of equal amount of wild type cRNA. Co-injection of excess amount of mutant with wild type produced dominant negative suppression with a shift in voltage dependent activation. Therefore, multiple mechanisms are involved in different mutations and functional abnormality in LQT2. Further characterization with the interactions between various mutants in HERG and the regulatory subunits of the channels (MiRP1 and minK) is to be clarified.

  • PDF

Chemical Modification of the Human Ether-a-go-go-related gene (HERG) $K^+$ Current by the Amino-Group Reagent Trinitrobenzene Sulfonic Acid

  • Jo Su-Hyun;Choi Se-Young;Yun Ji-Hyun;Koh Young-Sang;Ho Won-Kyung;Lee Chin-O.
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.310-317
    • /
    • 2006
  • We investigated the effects of trinitrobenzene sulfonic acid (TNBS), an amino-group reagent, on the human ether-a-go-go-related gene (HERG) $K^+$ channels expressed in Xenopus oocytes. TNBS neutralizes the positively charged amino-groups of peptide N-terminal and lysine residues. External application of TNBS at 10 mM for 5 min irreversibly shifted the curves for currents at the end of the pulse and tail currents of HERG to a more negative potential and decreased the maximal amplitude of the $I_{tail}$ curve $(I_{tail,max})$. TNBS had little effect on either the activated current-voltage relationship or the reversal potential of HERG current, indicating that TNBS did not change ion selectivity properties. TNBS shifted the time constant curves of both activation and deactivation of the HERG current to a more hyperpolarized potential; TNBS's effect was greater on channel opening than channel closing. External $H^+$ is known to inhibit HERG current by shifting $V_{1/2}$ to the right and decreasing $I_{tail,max}$. TNBS enhanced the blockade of external $H^+$ by exaggerating the effect of $H^+$ on $I_{tail,max}$, not on $V_{1/2}$. Our data provide evidence for the presence of essential amino-groups that are associated with the normal functioning of the HERG channel and evidence that these groups modify the blocking effect of external $H^+$ on the current.

Differential Effects of Ginsenoside Metabolites on HERG K+ Channel Currents

  • Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Oh, Jae-Wook;Bae, Chun-Sik;Lee, Soo-Han;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.191-199
    • /
    • 2011
  • The human ether-a-go-go-related gene (HERG) cardiac $K^+$ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside $Rg_3$ regulates HERG $K^+$ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG $K^+$ channel activity. In the present study, we examined the effects of ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) on HERG $K^+$ channel activity by expressing human a subunits in Xenopus oocytes. CK induced a large persistent deactivatingtail current ($I_{deactivating-tail}$) and significantly decelerated deactivating current decay in a concentration-dependent manner. The $EC_{50}$ for persistent $I_{deactivating-tail}$ was $16.6{\pm}1.3$ ${\mu}M$. In contrast to CK, PPT accelerated deactivating-tail current deactivation. PPD itself had no effects on deactivating-tail currents, whereas PPD inhibited ginsenoside $Rg_3$-induced persistent $I_{deactivating-tail}$ and accelerated HERG $K^+$ channel deactivation in a concentration-dependent manner. These results indicate that ginsenoside metabolites exhibit differential regulation on Ideactivating-tail of HERG $K^+$ channel.

Blockade of the HERG Human Cardiac $K^+$ Channel by the Antidepressant Drug Amitriptyline

  • Jo, Su-Hyun;Lee, Chin. O.;Yung E. Earm;Ho, Won-Kyung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.64-64
    • /
    • 1999
  • Amitriptyline has been known to induce QT prolongation and ventricular arrhythmias such as torsades de pointes which causes sudden death. We studied the effects of amitriptyline on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes.(omitted)

  • PDF

Block of HERG Channels Expressed in Xenopus oocytes by External$Ca^{2+}$

  • Kim, Injune;Ho, Won-Kyung;Chung, Yu-Jeong;Earm, Yung-E;Lee, Chin-Ok
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.31-31
    • /
    • 1997
  • Rapidly activating delayed K current (IKr) in cardiac muscles plays an important in repolarization. Expression of HERG cloned by the study on inherited LQT revealed that it encodes a potassium channel with biophysical properties similar to those of IKr in cardiac myocytes: outward currents activating on depolarization with large tail currents on repolarization, implying the inward rectifying property.(omitted)

  • PDF

Block of hERG $K^+$ Channel by Classic Histamine $H_1$ Receptor Antagonist Chlorpheniramine

  • Hong, Hee-Kyung;Jo, Su-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Chlorpheniramine is a potent first-generation histamine $H_1$ receptor antagonist that can increase action potential duration and induce QT prolongation in several animal models. Since block of cardiac human ether-a-go-go-related gene (hERG) channels is one of leading causes of acquired long QT syndrome, we investigated the acute effects of chlorpheniramine on hERG channels to determine the electrophysiological basis for its proarrhythmic potential. We examined the effects of chlorpheniramine on the hERG channels expressed in Xenopus oocytes using two-microelectrode voltage-clamp techniques. Chlorpheniramine induced a concentration-dependent decrease of the current amplitude at the end of the voltage steps and hERG tail currents. The $IC_{50}$ of chlorpheniramine-dependent hERG block in Xenopus oocytes decreased progressively relative to the degree of depolarization. Chlorpheniramine affected the channels in the activated and inactivated states but not in the closed states. The S6 domain mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) the hERG current block. These results suggest that the $H_1$ antihistamine, chlorpheniramine is a blocker of the hERG channels, providing a molecular mechanism for the drug-induced arrhythmogenic side effects.

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong;Cho, Hea-Young;Cha, Ji-Hun;Kwon, Kyoung-Jin;Jeon, Seol-Hee;Jo, Su-Hyun;Kim, Eun-Jung;Kim, Hye-Soo;Chung, Hye-Ju
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.448-453
    • /
    • 2010
  • Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.

Chelidonine blocks hKv 1.5 channel current

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Young-Geun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.112-112
    • /
    • 2003
  • Voltage-gated $K^{+}$ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. These channels play an important role in determining the length of the cardiac action potential and are the targets for antiarrhythmic drugs. Many $K^{+}$ channel genes have been cloned from human myocardium and functionally contribute to its electrical activity. One of these channels, Kv1.5, is one of the more cardiovascular-specific $K^{+}$ channel isoforms identified to date and forms the molecular basis for an ultra-rapid delayed rectifier $K^{+}$ current found in human atrium. Thus, the blocker of hKv1.5 is expected to be an ideal antiarrhythmic drug for atrial fibrillation. Chelidonine was isolated from Chelidonium majus L. We examined the effect of chelidonine on the hKv1.5 current expressed in Ltk-cells using whole cell mode of patch clamp techniques. Chelidonine selectively inhibited the hKv1.5 current expressed in Ltk-cells in a concentration-dependent manner, whereas did not affect the HERG current expressed in HEK-293 cells. Additionally, chelidonine reduced the tail current amplitude recorded at -50 mV after 250 ms depolarizing pulses to +60 mV, and slowed the deactivation time course resulting in a 'crossover' phenomenon when the tail currents recorded under control conditions and in the presence of chelidonine were superimposed. We found that chelidonine also inhibited the $K^{+}$ current in isolated human atrial myocytes where hKv1.5 channels were predominantly expressed. Furthermore, we examined the effects of chelidonine on the action potentials in rabbit hearts using conventional microelectrode technique. Chelidonine prolonged the action potential durations (APD) of atrial, ventricular myocytes and Purkinje fibers in a dose-dependent manner. However, the effect of chelidonine on atrial APD was frequency-dependent whereas the effect of chelidonine on the APDs of ventricular myocytes and Purkinje fibers was not frequency- dependent. Also, the selective action of chelidonine on heart was more potent than dofetilide, $K^{+}$ channel blocker.

  • PDF