• Title/Summary/Keyword: Harnack inequality

Search Result 11, Processing Time 0.025 seconds

HARNACK INEQUALITY FOR A NONLINEAR PARABOLIC EQUATION UNDER GEOMETRIC FLOW

  • Zhao, Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1587-1598
    • /
    • 2013
  • In this paper, we obtain some gradient estimates for positive solutions to the following nonlinear parabolic equation $$\frac{{\partial}u}{{\partial}t}={\triangle}u-b(x,t)u^{\sigma}$$ under general geometric flow on complete noncompact manifolds, where 0 < ${\sigma}$ < 1 is a real constant and $b(x,t)$ is a function which is $C^2$ in the $x$-variable and $C^1$ in the$t$-variable. As an application, we get an interesting Harnack inequality.

ROUGH ISOMETRY AND HARNACK INEQUALITY

  • Park, Hyeong-In;Lee, Yong-Hah
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.455-468
    • /
    • 1996
  • Certain analytic behavior of geometric objects defined on a Riemannian manifold depends on some very crude properties of the manifold. Some of those crude invariants are the volume growth rate, isoperimetric constants, and the likes. However, these crude invariants sometimes exercise surprising control over the analytic behavior.

  • PDF

THE CAUCHY PROBLEM FOR A DENGERATE PARABOLIC EQUATION WITH ABSORPTION

  • Lee, Jin-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.303-316
    • /
    • 2000
  • The Cauchy problem for degenerate parabolic equations with absorption is studied. We prove the existence of a fundamental solution. Also a Harnack type inequality is established and the existence and uniqueness of initial trace for nonnegative solutions is shown.

  • PDF

POSITIVE SOLUTIONS TO DISCRETE HARMONIC FUNCTIONS IN UNBOUNDED CYLINDERS

  • Fengwen Han;Lidan Wang
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.377-393
    • /
    • 2024
  • In this paper, we study the positive solutions to a discrete harmonic function for a random walk satisfying finite range and ellipticity conditions, killed at the boundary of an unbounded cylinder in ℤd. We first prove the existence and uniqueness of positive solutions, and then establish that all the positive solutions are generated by two special solutions, which are exponential growth at one end and exponential decay at the other. Our method is based on maximum principle and a Harnack type inequality.

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.

ROUGH ISOMETRY, HARMONIC FUNCTIONS AND HARMONIC MAPS ON A COMPLETE RIEMANNIAN MANIFOLD

  • Kim, Seok-Woo;Lee, Yong-Han
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.73-95
    • /
    • 1999
  • We prove that if a given complete Riemannian manifold is roughly isometric to a complete Riemannian manifold satisfying the volume doubling condition, the Poincar inequality and the finite covering condition at infinity on each end, then every positive harmonic function on the manifold is asymptotically constant at infinity on each end. This result is a direct generalization of those of Yau and of Li and Tam.

  • PDF

THE EXPONENTIAL GROWTH AND DECAY PROPERTIES FOR SOLUTIONS TO ELLIPTIC EQUATIONS IN UNBOUNDED CYLINDERS

  • Wang, Lidan;Wang, Lihe;Zhou, Chunqin
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1573-1590
    • /
    • 2020
  • In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x) or Lu(x) = Di(aij(x)Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x) in unbounded cylinders. After establishing that the Aleksandrov maximum principle and boundary Harnack inequality hold for bounded solutions, we show that all solutions bounded from below are linear combinations of solutions, which are sums of two special solutions that exponential growth at one end and exponential decay at the another end, and a bounded solution that corresponds to the inhomogeneous term f of the equation.

Harnack Estimate for Positive Solutions to a Nonlinear Equation Under Geometric Flow

  • Fasihi-Ramandi, Ghodratallah;Azami, Shahroud
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.631-644
    • /
    • 2021
  • In the present paper, we obtain gradient estimates for positive solutions to the following nonlinear parabolic equation under general geometric flow on complete noncompact manifolds $$\frac{{\partial}u}{{\partial}t}={\Delta}u+a(x,t)u^p+b(x,t)u^q$$ where, 0 < p, q < 1 are real constants and a(x, t) and b(x, t) are functions which are C2 in the x-variable and C1 in the t-variable. We shall get an interesting Harnack inequality as an application.

AN INTERPOLATING HARNACK INEQUALITY FOR NONLINEAR HEAT EQUATION ON A SURFACE

  • Guo, Hongxin;Zhu, Chengzhe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.909-914
    • /
    • 2021
  • In this short note we prove new differential Harnack inequalities interpolating those for the static surface and for the Ricci flow. In particular, for 0 ≤ 𝜀 ≤ 1, α ≥ 0, 𝛽 ≥ 0, 𝛾 ≤ 1 and u being a positive solution to $${\frac{{\partial}u}{{\partial}t}}={\Delta}u-{\alpha}u\;{\log}\;u+{\varepsilon}Ru+{\beta}u^{\gamma}$$ on closed surfaces under the flow ${\frac{\partial}{{\partial}t}}g_{ij}=-{\varepsilon}Rg_{ij}$ with R > 0, we prove that $${\frac{\partial}{{\partial}t}}{\log}\;u-{\mid}{\nabla}\;{\log}\;u{\mid}^2+{\alpha}\;{\log}\;u-{\beta}u^{{\gamma}-1}+\frac{1}{t}={\Delta}\;{\log}\;u+{\varepsilon}R+{\frac{1}{t}{}\geq}0$$.