• Title/Summary/Keyword: Hausdorff topology

Search Result 18, Processing Time 0.026 seconds

HAUSDORFF TOPOLOGY INDUCED BY THE FUZZY METRIC AND THE FIXED POINT THEOREMS IN FUZZY METRIC SPACES

  • WU, HSIEN-CHUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1287-1303
    • /
    • 2015
  • The Hausdorff topology induced by a fuzzy metric space under more weak assumptions is investigated in this paper. Another purpose of this paper is to obtain the Banach contraction theorem in fuzzy metric space based on a natural concept of Cauchy sequence in fuzzy metric space.

Two notes on "On soft Hausdorff spaces"

  • El-Shafei, M.E.;Abo-Elhamayel, M.;Al-shami, T.M.
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • v.16 no.3
    • /
    • pp.333-336
    • /
    • 2018
  • One of the well known results in general topology says that every compact subset of a Hausdorff space is closed. This result in soft topology is not true in general as demonstrated throughout this note. We begin this investigation by showing that [Theorem 3.34, p.p.23] which proposed by Varol and $Ayg{\ddot{u}}n$ [7] is invalid in general, by giving a counterexample. Then we derive under what condition this result can be generalized in soft topology. Finally, we evidence that [Example 3.22, p.p. 20] which introduced in [7] is false, and we make a correction for this example to satisfy a condition of soft Hausdorffness.

ERGODIC SHADOWING, $\underline{d}$-SHADOWING AND EVENTUAL SHADOWING IN TOPOLOGICAL SPACES

  • Sonika, Akoijam;Khundrakpam Binod, Mangang
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.839-853
    • /
    • 2022
  • We define the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property in terms of the topology of the phase space. Secondly we define these notions in terms of the compatible uniformity of the phase space. When the phase space is a compact Hausdorff space, we establish the equivalence of the corresponding definitions of the topological approach and the uniformity approach. In case the phase space is a compact metric space, the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property defined in terms of topology and uniformity are equivalent to their respective standard definitions.

ON THE PRIME SPECTRUM OF A RING (환의 PRIME SPECTRUM에 관하여)

  • Kim Eung Tai
    • The Mathematical Education
    • /
    • v.12 no.2
    • /
    • pp.5-12
    • /
    • 1974
  • 단위원을 가지는 하환환에 있어서의 Prime Spectrum에 관하여 다음 세가지 사실을 증명하였다. 1. X를 환 R의 prime spectrum, C(X)를 X에서 정의되는 실연적함수의 환, X를 C(X)의 maximal spectrum이라 하면 X는 C(X)의 prime spectrum의 부분공간으로서의 한 T-space로 된다. N을 환 R의 nilradical이라 하면, R/N이 regula 이면 X와 X는 위상동형이다. 2. f: R$\longrightarrow$R'을 ring homomorphism, P를 R의 한 Prime ideal, $R_{p}$, R'$_{p}$를 각각 S=R-P 및 f(S)에 관한 분수환(ring of fraction)이라 하고, k(P)를 local ring $R_{p}$의 residue' field라 할 때, R'의 prime spectrum의 부분공간인 $f^{*-1}$(P)는 k(P)(equation omitted)$_{R}$R'의 prime spectrum과 위상동형이다. 단 f*는 f*(Q)=$f^{-1}$(Q)로서 정의되는 함수 s*:Spec(R')$\longrightarrow$Spec(R)이다. 3. X를 환 S의 prime spectrum, N을 R의 nilradical이라 할 때, 다음 네가지 사실은 동치이다. (1) R/N 은 regular 이다. (2) X는 Zarski topology에 관하여 Hausdorff 공간이다. (3) X에서의 Zarski topology와 constructible topology와는 일치한다. (4) R의 임의의 원소 f에 대하여 f를 포함하지 않는 R의 prime ideal 전체의 집합 $X_{f}$는 Zarski topology에 관하여 개집합인 동시에 폐집합이다.폐집합이다....

  • PDF

TOTALLY CHAIN-TRANSITIVE ATTRACTORS OF GENERIC HOMEOMORPHISMS ARE PERSISTENT

  • GHANE FATEMEH HELEN;FAKHARI ABBAS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.631-638
    • /
    • 2005
  • we prove that, given any compact metric space X, there exists a residual subset R of H(X), the space of all homeomorphisms on X, such that if $\in$ R has a totally chain-transitive attractor A, then any g sufficiently close to f has a totally chain transitive attractor A$\_{g}$ which is convergent to A in the Hausdorff topology.

ON THE TOPOLOGY OF THE DUAL SPACE OF CROSSED PRODUCT C*-ALGEBRAS WITH FINITE GROUPS

  • Kamalov, Firuz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.391-397
    • /
    • 2017
  • In this note we extend our previous result about the structure of the dual of a crossed product $C^*$-algebra $A{\rtimes}_{\sigma}G$, when G is a finite group. We consider the space $\tilde{\Gamma}$ which consists of pairs of irreducible representations of A and irreducible projective representations of subgroups of G. Our goal is to endow $\tilde{\Gamma}$ with a topology so that the orbit space e $G{\backslash}{\tilde{\Gamma}}$ is homeomorphic to the dual of $A{\rtimes}_{\sigma}G$. In particular, we will show that if $\widehat{A}$ is Hausdorff then $G{\backslash}{\tilde{\Gamma}}$ is homeomorphic to $\widehat{A{\rtimes}_{\sigma}G}$.

BOUNDED CONVERGENCE THEOREMS

  • Niemiec, Piotr
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.319-357
    • /
    • 2017
  • There are presented certain results on extending continuous linear operators defined on spaces of E-valued continuous functions (defined on a compact Hausdorff space X) to linear operators defined on spaces of E-valued measurable functions in a way such that uniformly bounded sequences of functions that converge pointwise in the weak (or norm) topology of E are sent to sequences that converge in the weak, norm or weak* topology of the target space. As an application, a new description of uniform closures of convex subsets of C(X, E) is given. Also new and strong results on integral representations of continuous linear operators defined on C(X, E) are presented. A new classes of vector measures are introduced and various bounded convergence theorems for them are proved.

MINIMAL P-SPACES

  • Arya, S.P.;Bhamini, M.P.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 1987
  • Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, $\mathfrak{T}$) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology $\mathfrak{T}^{\prime}$ on X which is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained. The present paper is a study of minimal P-spaces where P refers to the property of being an s-Urysohn space or an s-regular space. A P-space (X, $\mathfrak{T}$) is said to be minimal P if for no topology $\mathfrak{T}^{\prime}$ on X such that $\mathfrak{T}^{\prime}$ is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) has the property P. A space X is said to be s-Urysohn [2] if for any two distinct points x and y of X there exist semi-open set U and V containing x and y respectively such that $clU{\bigcap}clV={\phi}$, where clU denotes the closure of U. A space X is said to be s-regular [6] if for any point x and a closed set F not containing x there exist disjoint semi-open sets U and V such that $x{\in}U$ and $F{\subseteq}V$. Throughout the paper the spaces are assumed to be Hausdorff.

  • PDF

ON ARCWISE CONNECTEDNESS IM KLEINEN IN HYPERSPACES

  • Baik, Bong Shin;Rhee, Choon Jai
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • Let X be a space and $2^X$(C(X);K(X);$C_K$(X)) denote the hyperspace of nonempty closed subsets(connected closed subsets, compact subsets, subcontinua) of X with the Vietoris topology. We investigate the relationships between the space X and its hyperspaces concerning the properties of connectedness im kleinen. We obtained the following : Let X be a locally compact Hausdorff space. Let $x{\in}X$. Then the following statements are equivalent: (1) X is connected im kleinen at $x$. (2) $2^X$ is arcwise connected im kleinen at {$x$}. (3) K(X) is arcwise connected im kleinen at {$x$}. (4) $C_K$(X) is arcwise connected im kleinen at {$x$}. (5) C(X) is arcwise connected im kleinen at {$x$}.