• Title/Summary/Keyword: Herz space

Search Result 10, Processing Time 0.025 seconds

BOUNDEDNESS OF BEREZIN TRANSFORM ON HERZ SPACES

  • Cho, Chu-Hee;Na, Kyun-Guk
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.829-842
    • /
    • 2012
  • In this paper, we give the condition for the boundedness of the Berezin transforms on Herz spaces with a normal weight on the unit ball of $\mathbb{C}^n$. And we provide the integral estimates concerning pluriharmonic kernel functions. Using this, we finally obtain the growth estimates of the Berezin transforms on such Herz spaces.

COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

  • Wang, Hongbin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.713-732
    • /
    • 2017
  • Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent.

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

  • Wu, Jianglong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.423-435
    • /
    • 2014
  • In this paper, the fractional Hardy-type operator of variable order ${\beta}(x)$ is shown to be bounded from the Herz-Morrey spaces $M\dot{K}^{{\alpha},{\lambda}}_{p_1,q_1({\cdot})}(\mathbb{R}^n)$ with variable exponent $q_1(x)$ into the weighted space $M\dot{K}^{{\alpha},{\lambda}}_{p_2,q_2({\cdot})}(\mathbb{R}^n,{\omega})$, where ${\omega}=(1+|x|)^{-{\gamma}(x)}$ with some ${\gamma}(x)$ > 0 and $1/q_1(x)-1/q_2(x)={\beta}(x)/n$ when $q_1(x)$ is not necessarily constant at infinity. It is assumed that the exponent $q_1(x)$ satisfies the logarithmic continuity condition both locally and at infinity that 1 < $q_1({\infty}){\leq}q_1(x){\leq}(q_1)+$ < ${\infty}(x{\in}\mathbb{R}^n)$.