• Title/Summary/Keyword: Hilbert complex

Search Result 104, Processing Time 0.022 seconds

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

STUDY ON THE JOINT SPECTRUM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • We introduce the Joint spectrum on the complex Banach space and on the complex Hilbert space and the tensor product spectrums on the tensor product spaces. And we will show ${\sigma}[P(T_1,T_2,{\ldots},T_n)]={\sigma}(T_1{\otimes}T_2{\otimes}{\cdots}{\otimes}T_n)$ on $X_1{\overline{\otimes}}X_2{\overline{\otimes}}{\cdots}{\overline{\otimes}}X_n$ for a polynomial P.

  • PDF

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.

HILBERT-SCHMIDT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG${\pounds}$

  • Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • Given operators X and Y acting on a separable complex Hilbert space H, an interpolating operator is a bounded operator A such that AX=Y. In this article, we investigate Hilbert-Schmidt interpolation problems for operators in a tridiagonal algebra and we get the following: Let ${\pounds}$ be a subspace lattice acting on a separable complex Hilbert space H and let X=$(x_{ij})$ and Y=$(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a Hilbert-Schmidt operator $A=(a_{ij})$ in Alg${\pounds}$ such that AX=Y. (2) There is a bounded sequence $\{{\alpha}_n\}$ in $\mathbb{C}$ such that ${\sum}_{n=1}^{\infty}|{\alpha}_n|^2<{\infty}$ and $$y1_i={\alpha}_1x_{1i}+{\alpha}_2x_{2i}$$ $$y2k_i={\alpha}_{4k-1}x_2k_i$$ $$y{2k+1}_i={\alpha}_{4k}x_{2k}_i+{\alpha}_{4k+1}x_{2k+1}_i+{\alpha}_{4k+2}x_{2k+2}_i\;for\;all\;i,\;k\;\mathbb{N}$$.

  • PDF

THE GENERALIZED INVERSES A(1,2)T,S OF THE ADJOINTABLE OPERATORS ON THE HILBERT C^*-MODULES

  • Xu, Qingxiang;Zhang, Xiaobo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.363-372
    • /
    • 2010
  • In this paper, we introduce and study the generalized inverse $A^{(1,2)}_{T,S}$ with the prescribed range T and null space S of an adjointable operator A from one Hilbert $C^*$-module to another, and get some analogous results known for finite matrices over the complex field or associated rings, and the Hilbert space operators.

On a Hilbert-Type Integral Inequality with a Combination Kernel and Applications

  • Yang, Bicheng
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.281-288
    • /
    • 2010
  • By introducing some parameters and using the way of weight function and the technic of real analysis and complex analysis, a new Hilbert-type integral inequality with a best constant factor and a combination kernel involving two mean values is given, which is an extension of Hilbert's integral inequality. As applications, the equivalent form and the reverse forms are considered.

Performance Evaluation of the Complex-Coefficient Adaptive Equalizer Using the Hilbert Transform

  • Park, Kyu-Chil;Yoon, Jong Rak
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • In underwater acoustic communication, the transmitted signals are severely influenced by the reflections from both the sea surface and the sea bottom. As very large reflection signals from these boundaries cause an inter-symbol interference (ISI) effect, the communication quality worsens. A channel estimation-based equalizer is usually adopted to compensate for the reflected signals under the acoustic communication channel. In this study, a feed-forward equalizer (FFE) with the least mean squares (LMS) algorithm was applied to a quadrature phase-shift keying (QPSK) transmission system. Two different types of equalizers were adopted in the QPSK system, namely a real-coefficient equalizer and a complex-coefficient equalizer. The performance of the complex-coefficient equalizer was better than that of two real-coefficient equalizers. Therefore, a Hilbert transform was applied to the real-coefficient binary phase-shift keying (BPSK) system to obtain a complex-coefficient BPSK system. Consequently, we obtained better results than those of a real-coefficient equalizer.

Thermal stress Intensity Factors for the Interfacial Crack on a Cusp-Type Inclusion (커스프형 강체함유물 상의 접합경계면 균열에 대한 열응력세기계수)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1255-1265
    • /
    • 1992
  • Under uniform heat flow, the thermal stress intensity factors for the interfacial crack on a rigid cusp-type inclusion are determined by Hilbert problem expressed with complex variable. The thermal stress intensity factors are expressed in terms of the periodic function of heat flow angle. When the tip of the interfacial crack meets that of the cusp crack, the thermal stress intensity factors have singularities. The thermal stress intensity factors at the interfacial crack tip located in the distance from the cusp crack tip vary with the location of the interfacial crack tip. From the results of the analysis, the complex potential functions and the thermal stress intensity factors for the cusp-type inclusion without the interfacial crack are derived under the cusp surface boundary conditions insulated or fixed to zero relative temperature.

HILBERT-SCHMIDT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • Given vectors x and y in a separable Hilbert space $\cal H$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We show the following: Let $\cal L$ be a subspace lattice acting on a separable complex Hilbert space $\cal H$ and let x = ($x_{i}$) and y = ($y_{i}$) be vectors in $\cal H$. Then the following are equivalent; (1) There exists a Hilbert-Schmidt operator A = ($a_{ij}$ in Alg$\cal L$ such that Ax = y. (2) There is a bounded sequence {$a_n$ in C such that ${\sum^{\infty}}_{n=1}\mid\alpha_n\mid^2 < \infty$ and $y_1 = \alpha_1x_1 + \alpha_2x_2$ ... $y_{2k} =\alpha_{4k-1}x_{2k}$ $y_{2k=1} = \alpha_{4kx2k} + \alpha_{4k+1}x_{2k+1} + \alpha_{4k+1}x_{2k+2}$ for K $\epsilon$ N.

  • PDF