• Title/Summary/Keyword: Historical traffic data

Search Result 82, Processing Time 0.028 seconds

Design of methodology for management of a large volume of historical archived traffic data (대용량 과거 교통 이력데이터 관리를 위한 방법론 설계)

  • Woo, Chan Il;Jeon, Se Gil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.19-27
    • /
    • 2010
  • Historical archived traffic data management system enables a long term time-series analysis and provides data necessary to acquire the constantly changing traffic conditions and to evaluate and analyze various traffic related strategies and policies. Such features are provided by maintaining highly reliable traffic data through scientific and systematic management. Now, the management systems for massive traffic data have a several problems such as, the storing and management methods of a large volume of archive data. In this paper, we describe how to storing and management for the massive traffic data and, we propose methodology for logical and physical architecture, collecting and storing, database design and implementation, process design of massive traffic data.

TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC (교통량예측모형의 개발과 평가)

  • 김창균
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

Development and Application of Imputation Technique Based on NPR for Missing Traffic Data (NPR기반 누락 교통자료 추정기법 개발 및 적용)

  • Jang, Hyeon-Ho;Han, Dong-Hui;Lee, Tae-Gyeong;Lee, Yeong-In;Won, Je-Mu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.61-74
    • /
    • 2010
  • ITS (Intelligent transportation systems) collects real-time traffic data, and accumulates vest historical data. But tremendous historical data has not been managed and employed efficiently. With the introduction of data management systems like ADMS (Archived Data Management System), the potentiality of huge historical data dramatically surfs up. However, traffic data in any data management system includes missing values in nature, and one of major obstacles in applying these data has been the missing data because it makes an entire dataset useless every so often. For these reasons, imputation techniques take a key role in data management systems. To address these limitations, this paper presents a promising imputation technique which could be mounted in data management systems and robustly generates the estimations for missing values included in historical data. The developed model, based on NPR (Non-Parametric Regression) approach, employs various traffic data patterns in historical data and is designated for practical requirements such as the minimization of parameters, computational speed, the imputation of various types of missing data, and multiple imputation. The model was tested under the conditions of various missing data types. The results showed that the model outperforms reported existing approaches in the side of prediction accuracy, and meets the computational speed required to be mounted in traffic data management systems.

A Model to Calibrate Expressway Traffic Forecasting Errors Considering Socioeconomic Characteristics and Road Network Structure (사회경제적 특성과 도로망구조를 고려한 고속도로 교통량 예측 오차 보정모형)

  • Yi, Yongju;Kim, Youngsun;Yu, Jeong Whon
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2013
  • PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.

Travel Time Forecasting in an Interrupted Traffic Flow by adopting Historical Profile and Time-Space Data Fusion (히스토리컬 프로파일 구축과 시.공간 자료합성에 의한 단속류 통행시간 예측)

  • Yeo, Tae-Dong;Han, Gyeong-Su;Bae, Sang-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.133-144
    • /
    • 2009
  • In Korea, the ITS project has been progressed to improve traffic mobility and safety. Further, it is to relieve traffic jam by supply real time travel information for drivers and to promote traffic convenience and safety. It is important that the traffic information is provided accurately. This study was conducted outlier elimination and missing data adjustment to improve accuracy of raw data. A method for raise reliability of travel time prediction information was presented. We developed Historical Profile model and adjustment formula to reflect quality of interrupted flow. We predicted travel time by developed Historical Profile model and adjustment formula and verified by comparison between developed model and existing model such as Neural Network model and Kalman Filter model. The results of comparative analysis clarified that developed model and Karlman Filter model similarity predicted in general situation but developed model was more accurate than other models in incident situation.

Application of Traffic Conflict Decision Criteria for Signalized Intersections Using an Individual Vehicle Tracking Technique (개별차량 추적기법을 이용한 신호교차로 교통상충 판단기준 정립 및 적용)

  • Kim, Myung-Seob;Oh, Ju-Taek;Kim, Eung-Cheol;Jung, Dong-Woo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.173-184
    • /
    • 2008
  • Development of an accident estimation model based on accident data can be made after accident occurrences. However, the taking of historical accident data is not easy, and there have been differences between real accident data and police-reported accident data. Also, another difficult shortcoming is that historical traffic accident data better consider driver behavior or intersection characteristics. A new method needs to be developed that can predict accident occurrences for traffic safety improvement in black spots. Traffic conflict decision techniques can acquire and analyze data in time and space, requiring less data collection through investigation. However, there are shortcomings: as existing traffic conflict techniques do not operate automatically, the analyst's opinion could easily affect the study results. Also, existing methods do not consider the severity of traffic conflicts. In this study, the authors presented traffic conflict decision criteria which consider conflict severity, including opposing left turn traffic conflict and cross traffic conflict decision criteria. In order to test these criteria, the authors acquired three signalized intersection images (two intersections in Sungnam city and one intersection in Paju) and analyzed the acquired images using image processing techniques based on individual vehicle tracking technology. Within the analyzed images, level 1 conflicts occurred 343 times over three intersections. Some of these traffic conflicts resulted in level 3 conflict situations. Level 3 traffic conflicts occurred 25 times. From the study results, the authors found that traffic conflict decision techniques can be an alternative to evaluate traffic safety in black spots.

An Algorithm for Identifying the Change of the Current Traffic Congestion Using Historical Traffic Congestion Patterns (과거 교통정체 패턴을 이용한 현재의 교통정체 변화 판별 알고리즘)

  • Lee, Kyungmin;Hong, Bonghee;Jeong, Doseong;Lee, Jiwan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • In this paper, we proposed an algorithm for the identification of relieving or worsening current traffic congestion using historic traffic congestion patterns. Historical congestion patterns were placed in an adjacency list. The patterns were constructed to represent spatial and temporal length for status of a congested road. Then, we found information about historical traffic congestions that were similar to today's traffic congestion and will use that information to show how to change traffic congestion in the future. The most similar pattern to current traffic status among the historical patterns corresponded to starting section of current traffic congestion. One of our experiment results had average error when we compared identified changes of the congestion for one of the sections in the congestion road by using our proposal and real traffic status. The average error was 15 minutes. Another result was for the long congestion road consisting of several sections. The average error for this result was within 10 minutes.

A Study on the Voice Traffic and Internet Traffic Estimation (음성 트래픽과 인터넷 트래픽 추정에 관한 연구)

  • Hwang, Jung-Yeon;Kang, Byung-Ryong;Jun, Kyung-Pyo
    • IE interfaces
    • /
    • v.12 no.4
    • /
    • pp.625-634
    • /
    • 1999
  • On this study we selected some variable which affect on the estimated of the voice traffic, and estimated daily average traffic by years according to the variables. We applied nonlinear growth curve model to future traffic forecast with estimated historical traffic data. As a result of the forecasting, this study investigates the year in which the internet traffic goes far than the voice traffic.

  • PDF

A Study on the Construction of Historical Profiles for Travel Speed Prediction Using UTIS (UTIS기반 구간통행속도 예측을 위한 교통이력자료 구축에 관한 연구)

  • Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Bae, Kwang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.40-48
    • /
    • 2012
  • In this paper, we suggests methods for determining optimal representative value and the optimal size of historical data for reliable travel speed prediction. To evaluate the performance of the proposed method in real world environments, we did field tests at four roadway links in Seoul on Tuesday and Sunday. According to the results of applying the methods to historical data of Central Traffic Information Center, the optimal representative value were analyzed to be average and weighted average. Second, it was analyzed that 2 months data is the optimal size of historical data used for travel speed prediction.

A Study on Traffic Prediction Using Hybrid Approach of Machine Learning and Simulation Techniques (기계학습과 시뮬레이션 기법을 융합한 교통 상태 예측 방법 개발 연구)

  • Kim, Yeeun;Kim, Sunghoon;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.100-112
    • /
    • 2021
  • With the advent of big data, traffic prediction has been developed based on historical data analysis methods, but this method deteriorates prediction performance when a traffic incident that has not been observed occurs. This study proposes a method that can compensate for the reduction in traffic prediction accuracy in traffic incidents situations by hybrid approach of machine learning and traffic simulation. The blind spots of the data-driven method are revealed when data patterns that have not been observed in the past are recognized. In this study, we tried to solve the problem by reinforcing historical data using traffic simulation. The proposed method performs machine learning-based traffic prediction and periodically compares the prediction result with real time traffic data to determine whether an incident occurs. When an incident is recognized, prediction is performed using the synthetic traffic data generated through simulation. The method proposed in this study was tested on an actual road section, and as a result of the experiment, it was confirmed that the error in predicting traffic state in incident situations was significantly reduced. The proposed traffic prediction method is expected to become a cornerstone for the advancement of traffic prediction.