• Title/Summary/Keyword: Human cardiac fibroblasts

Search Result 5, Processing Time 0.017 seconds

Computational study of the wave propagation in three-dimensional human cardiac tissue

  • Kwon, Soon-Sung;Im, Uk-Bin;Kim, Ki-Woong;Lee, Yong-Ho;Shim, Eun-Bo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • We developed a three dimensional cardiac tissue model based on human cardiac cell and mono-domain approximation for action potential propagation. The human myocyte model proposed by ten Tusscher et al. (TNNP model) (2004) for cell electrophysiology and a mono-domain method for electric wave propagation are used to simulate the cardiac tissue propagation mechanism using a finite element method. To delineate non-homogeneity across cardiac tissue layer, we used three types of cardiac cell models. Ansiotropic effect of action potential propagation is also considered in this study. In this 3D anisotropic cardiac tissue with three cell layers, we generated a reentrant wave using S1-S2 protocol. Computational results showed that the reentrant wave was affected by the anisotropic properties of the cells. To test the reentrant wave under pathological state, we simulated a hypertopic model with non-excitable fibroblasts in stochastic manner. Compared with normal tissue, the hypertropic tissue result showed another center of reentrant wave, indicating that the wave pattern can be more easily changed from regular with a concentric focus to irregular multi-focused reentrant waves in case of patients with hypertrophy.

  • PDF

Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway

  • Lu, Mei-Li;Wang, Jing;Sun, Yang;Li, Cong;Sun, Tai-Ran;Hou, Xu-Wei;Wang, Hong-Xin
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.683-694
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1) has been well documented to be effective against various cardiovascular disease. The aim of this study is to evaluate the effect of Rg1 on mechanical stress-induced cardiac injury and its possible mechanism with a focus on the calcium sensing receptor (CaSR) signaling pathway. Methods: Mechanical stress was implemented on rats through abdominal aortic constriction (AAC) procedure and on cardiomyocytes and cardiac fibroblasts by mechanical stretching with Bioflex Collagen I plates. The effects of Rg1 on cell hypertrophy, fibrosis, cardiac function, [Ca2+]i, and the expression of CaSR and calcineurin (CaN) were assayed both on rat and cellular level. Results: Rg1 alleviated cardiac hypertrophy and fibrosis, and improved cardiac decompensation induced by AAC in rat myocardial tissue and cultured cardiomyocytes and cardiac fibroblasts. Importantly, Rg1 treatment inhibited CaSR expression and increase of [Ca2+]i, which similar to the CaSR inhibitor NPS2143. In addition, Rg1 treatment inhibited CaN and TGF-b1 pathways activation. Mechanistic analysis showed that the CaSR agonist GdCl3 could not further increase the [Ca2+]i and CaN pathway related protein expression induced by mechanical stretching in cultured cardiomyocytes. CsA, an inhibitor of CaN, inhibited cardiac hypertrophy, cardiac fibrosis, [Ca2+]i and CaN signaling but had no effect on CaSR expression. Conclusion: The activation of CaN pathway and the increase of [Ca2+]i mediated by CaSR are involved in cardiac hypertrophy and fibrosis, that may be the target of cardioprotection of Rg1 against myocardial injury.

Effects of hydrogen peroxide on voltage-dependent K+ currents in human cardiac fibroblasts through protein kinase pathways

  • Bae, Hyemi;Lee, Donghee;Kim, Young-Won;Choi, Jeongyoon;Lee, Hong Jun;Kim, Sang-Wook;Kim, Taeho;Noh, Yun-Hee;Ko, Jae-Hong;Bang, Hyoweon;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Human cardiac fibroblasts (HCFs) have various voltage-dependent $K^+$ channels (VDKCs) that can induce apoptosis. Hydrogen peroxide ($H_2O_2$) modulates VDKCs and induces oxidative stress, which is the main contributor to cardiac injury and cardiac remodeling. We investigated whether $H_2O_2$ could modulate VDKCs in HCFs and induce cell injury through this process. In whole-cell mode patch-clamp recordings, application of $H_2O_2$ stimulated $Ca^{2+}-activated$ $K^+$ ($K_{Ca}$) currents but not delayed rectifier $K^+$ or transient outward $K^+$ currents, all of which are VDKCs. $H_2O_2-stimulated$ $K_{Ca}$ currents were blocked by iberiotoxin (IbTX, a large conductance $K_{Ca}$ blocker). The $H_2O_2-stimulating$ effect on large-conductance $K_{Ca}$ ($BK_{Ca}$) currents was also blocked by KT5823 (a protein kinase G inhibitor) and 1 H-[1, 2, 4] oxadiazolo-[4, 3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor). In addition, 8-bromo-cyclic guanosine 3', 5'-monophosphate (8-Br-cGMP) stimulated $BK_{Ca}$ currents. In contrast, KT5720 and H-89 (protein kinase A inhibitors) did not block the $H_2O_2-stimulating$ effect on $BK_{Ca}$ currents. Using RT-PCR and western blot analysis, three subtypes of $K_{Ca}$ channels were detected in HCFs: $BK_{Ca}$ channels, small-conductance $K_{Ca}$ ($SK_{Ca}$) channels, and intermediate-conductance $K_{Ca}$ ($IK_{Ca}$) channels. In the annexin V/propidium iodide assay, apoptotic changes in HCFs increased in response to $H_2O_2$, but IbTX decreased $H_2O_2$-induced apoptosis. These data suggest that among the VDKCs of HCFs, $H_2O_2$ only enhances $BK_{Ca}$ currents through the protein kinase G pathway but not the protein kinase A pathway, and is involved in cell injury through $BK_{Ca}$ channels.

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.227-237
    • /
    • 2021
  • Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.