• Title/Summary/Keyword: Improvement depth

Search Result 1,309, Processing Time 0.024 seconds

Estimation of Depth of Improvement by Dynamic Compaction with Soil Conditions (지반조건에 따른 동다짐의 개량심도 평가)

  • Lee, Bong-Jik;Youn, Jun-Sik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.55-61
    • /
    • 2005
  • Dynamic compaction is a ground improvement technique which is particularly effective for loose granular soils. It has also been used successfully to the cohesive soils with high void ratio, and wastes and fills. For the design of dynamic compaction method, prediction of depth of improvement is very important. The depth of improvement is influenced not only by compaction energy but also by many parameters such as grid spacing, soil property, degree of saturation and site conditions. Based on the test results, the depth of improvement were evaluated with considering compaction energy, soil type and ground water level.

  • PDF

Analysis of Influence Parameters to Evaluate the Effective Depth of Improvement of Dynamic Compaction Method (동다짐 공법의 유효다짐깊이 결정에 영향을 주는 인자 분석)

  • Kim, Hong-Taek;Lee, Hyuk-Jin;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.659-666
    • /
    • 2004
  • Dynamic compaction has evolved as an acceptable method of site improvement by treating poor soils in situ. The method is often an economical alternative for utilizing shallow foundations and preparing subgrades for construction when compared with conventional solutions. In general, the installation purpose of dynamic compaction are to increase bearing capacity and decrease differential settlement within a specified depth of improvement. This method involves the s systematically dropping large weights onto the ground surface to compact the underlying ground. The weights used on dynamic compaction projects have been typically constructed of steel plates, sand or concrete filled steel shells, and reinforced concrete. Typically, weights range from 5-20 ton and base configurations are, circular or octagonal. In this study, the effective depth of improvement is evaluated based on the numerical analysis code, the dynamic analysis of FLAC-3D program, in order to analyze the influence parameters ; ground conditions, maximum applied load and the area of compaction plate.

  • PDF

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Numerical Study on the Prediction of the Depth of Improvement and Vibration Effect in Dynamic Compaction Method (동다짐 공법의 개량심도 및 진동영향 예측을 위한 수치해석적 연구)

  • Lee, Jong-Hwi;Lim, Dae-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this study, an applicability by using the FEM was investigated for the prediction of both the depth of improvement and the vibration effect when dynamic compaction method is applied. The region was modelled by the field conditions applying dynamic compaction method and the rigid body force was applied to the dynamic load model. Predicted depth of improvement calculated by the vertical peak particle acceleration was compared and analyzed with an existing empirical equation, and the effect of groundwave by deducing the peak particle velocity from vibration sources was compared and analyzed with the results of another existing empirical equation. The results showed that the prediction of the depth of improvement has similar tendency to practice, and the vibration effect has some differences in a particular section from existing equation, but it could predict the safety distance to some degree. The analyzed results are expected to be basic data for the development of reliability of dynamic compaction design with existing empirical method.

Stereoscopic Perception Improvement Using Color and Depth Transformation (컬러 및 깊이 데이터 변환을 이용하는 입체감 향상)

  • Gil, Jong-In;Jang, Seung-Eun;Seo, Joo-Ha;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.584-595
    • /
    • 2011
  • Recently, RGB images and depth maps have been supplied to academic fields. The depth maps are utilized to the generation of stereoscopic images in the diverse formats according to the users' preference. A variety of methods that use depth maps have been introduced so far. One of applications is a medical field. In this area, the improvement of the perceptual quality of 2D medical images has gained much interest. In this paper, we propose a novel scheme that expands the conventional method to 3D stereoscopic image, thereby achieving the perceptual depth quality improvement as well as 3D stereoscopic perception enhancement at the same time. For this, contrast transformation as well as depth darkening are proposed and their performance is validated through the subjective test. Subjective experiments peformed for stereoscopic enhancement as well as visual fatigue validate that the proposed method achieves better 3D perception than the usage of the original stereoscopic image and suggests the limitation in terms of the visual fatigue.

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

The Best Design of the Deep Mixing Method by the rate of substitution (치환율에 따른 심층혼합 처리공법의 최적 설계)

  • Park, Choon-Sik;Lee, Jun-Seok;Jung, Won-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.123-131
    • /
    • 2009
  • The study decided the improvement depth of soft ground of deep mixing method through 2 and 3 dimension finite element method and following results were acquired. 1. 2 dimension analysis shows settlement 10% more estimated than 3 dimension analysis. 2. When the rate of replacement is under 5%, the settlement sharply increased. 3. The most economical design for the levee was decided 3.0m for width direction, 6.0m for length direction and 8.0m for improvement depth. 4. When the soft ground is developed through deep mixing method, the decision of improvement should be decided through 3 dimension analysis than 2 dimension analysis.

  • PDF

Enhancing Depth Measurements in Depth From Focus based on Mutual Structures (상호 구조에 기반한 초점으로부터의 깊이 측정 방법 개선)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.17-21
    • /
    • 2022
  • A variety of techniques have been proposed in the literature for depth improvement in depth from focus method. Unfortunately, these techniques over-smooth the depth maps over the regions of depth discontinuities. In this paper, we propose a robust technique for improving the depth map by employing a nonconvex smoothness function that preserves the depth edges. In addition, the proposed technique exploits the mutual structures between the depth map and a guidance map. This guidance map is designed by taking the mean of image intensities in the image sequence. The depth map is updated iteratively till the nonconvex objective function converges. Experiments performed on real complex image sequences revealed the effectiveness of the proposed technique.

Water Quality Management of Agricultural Lakes Through Analysis of Agricultural Water Quality Survey Network Data (농업용수 수질측정망 자료 분석을 통한 농업용 호소의 수질관리방안)

  • Kim, Ho Il;Kim, Hyung Joong
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • The data of the agricultural water quality survey network was analyzed between from 1990 to 2010 in order to propose effective plans for water quality management by analyzing the characteristics of agricultural lakes and the change of water quality. The result of the analysis shows that there is a correlation between water quality and items that can be a function of water depth such as dam height, dam length, dam height/dam length ratio and active storage/surface area of lake ratio. This means that, Korean agricultural lakes, there is a correlation between water quality and water depth. Water quality of the lakes that have lower than 5m of active storage/surface area of lake ratio (effective water depth) especially tends to get worse rapidly. The Chl-a and COD concentration of Korean agricultural lakes have a tendency to increase between June and September. Therefore, we recommend first taking a water quality improvement project for the lakes preformed watershed management project, and taking a preventive short-term water quality improvement project for the unperformed lakes before June among lakes that have lower than 5m of effective water depth.

  • PDF

An In-depth Study on Applying Metric Weighting to Space Syntax (공간구문론에의 거리가중개념 적용에 관한 심층 연구)

  • Kim, Minseok;Piao, Gensong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.49-54
    • /
    • 2018
  • Applying metric(distance) factor as weighting to spatial syntax is known to not contribute to the explanatory power for the human movement behavior as compared to the geometric(angle) factor according to the negative results of several related studies. However, Kim & Piao (2017) assumed that there is not a problem of the metric factor itself but a problem of the way of applying the metric factor as weighting, and presented a new possibility of the metric factor as weighting by proposing and verifying the methods of applying the metric weighting, which are different from the existing ones. The purpose of this study is to propose advanced methods of applying the metric weighting to space syntax, and to verify whether they contribute to the improvement of explanatory power of space syntax analysis. In this paper, we propose functions for combined depth of distance-step that combine the distance-weighted depth function with the step depth function and apply them to axial segment analysis to check the improvement of explanatory power of them.