• Title/Summary/Keyword: In vitro Gas Test

Search Result 52, Processing Time 0.033 seconds

Nutritional Evaluation of Some Tropical Crop Residues: In Vitro Organic Matter, Neutral Detergent Fibre, True Dry Matter Digestibility and Metabolizable Energy Using the Hohenheim Gas Test

  • Aregheore, E.M.;Ikhatua, U.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.747-751
    • /
    • 1999
  • The Hohenheim in vitro gas test was used to assess the nutritional value of some crop residues of known in vivo digestibility. The crop residues are groundnut shells (GNS) corn cobs (CC); cassava peels (CaP); unripe and ripe plantain peels (UPP, RPP) and citrus pulp/peels (CPP). Compared to other crop residues, crude protein (CP) content of CC was low. Except for CaP and CPP that had low neutral detergent fibre (NDF) and acid detergent fibre (ADF), other residues contained a high amount of cell wall constituents. Net gas production was significantly different among the crop residues (p<0.05). Gas production was highest in CPP followed by CaP. CC, UPP and RPP have the same volume of net gas production, while the least net gas production was in GNS. True dry matter (TDM) digestibility was significantly different (p<0.05) among the residues. GNS was the least in TDM digestibility. CaP, UPP and RPP had similar TDM digestibility values, while the highest TDM digestibility was obtained in CPP. OM digestibility was different among the residues (p<0.05). CaP and CPP had the same ME value while CC, UPP and RPP had close ME values and GNS the least in ME (p<0.05). The potential extent (b) and rate (c) of gas production were statistical different among the residues (p<0.05). The Hohenheim gas test gave high in vitro organic matter (OM) digestibility for CC, CaP, UPP and RPP and CPP. Fermentable carbohydrates and probably available nitrogen in the crop residues influenced net gas production. The results showed that crop residues besides, providing bulk are also a source of energy and fermentable products which could be used in ruminant livestock production in the tropics.

Effects of Ensiling Alfalfa with Whole-crop Maize on the Chemical Composition and Nutritive Value of Silage Mixtures

  • Ozturk, Durmus;Kizilsimsek, Mustafa;Kamalak, Adem;Canbolat, Onder;Ozkan, Cagri Ozgur
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.526-532
    • /
    • 2006
  • The aim of this study was to evaluate the chemical composition, in vitro DM degradability, ME and OMD of alfalfa-maize silage mixtures in comparison to pure maize and alfalfa silages, and to test the existence of associative effects of ensiling alfalfa forage with whole-crop maize using the in vitro gas production technique. Ensiling alfalfa with whole-crop maize had a significant (p<0.001) effect on chemical composition, pH, in vitro DM degradability, OMD and estimated ME values of mixtures. DM content of the resultant silages significantly increased with increasing proportion of whole-crop maize in the mixtures, whereas the pH value, crude protein (CP), acid detergent fibre (ADF) and ash contents of mixtures decreased due to the dilution effect of whole-crop maize which was low in CP, ADF and ash. The pH values of all alfalfa-maize silage mixtures were at the desired level for quality silage. Gas production of alfalfa-maize silage mixtures at all incubation times except 12 h increased with increasing proportion of whole-crop maize. When alfalfa was mixed with whole-crop maize in the ratio 40:60, ME and OMD values were significantly (p<0.001) higher than other silages. Maximum gas production ($A_{gas}$) ranged from 65.7 to 78.1 with alfalfa silage showing the lowest maximum gas production. The results obtained in this study clearly showed that maximum gas production increased with increased percentage of whole-crop maize in the silage mixtures (r = 0.940, p<0.001). It was concluded that ensiling alfalfa with whole-crop maize improved the pH, OMD and ME values. However, trials with animals are required to see how these differences in silage mixtures affect animal performance.

Methane Production Potential of Feed Ingredients as Measured by In Vitro Gas Test

  • Lee, H.J.;Lee, S.C.;Kim, J.D.;Oh, Y.G.;Kim, B.K.;Kim, C.W.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1143-1150
    • /
    • 2003
  • This study was conducted to investigate in vitro methane production of feed ingredients and relationship between the content of crude nutrients and methane production. Feed ingredients (total 26) were grouped as grains (5 ingredients), brans and hulls (8), oil seed meals (9) roughages (3), and animal by-product (1) from their nutrient composition and their methane production protential were measured by in vitro gas test. Among the groups, the in vitro methane productions for both 6 and 24 h incubation were highest in grains, followed by brans and hulls, oil meals and roughages, animal byproducts. Within the group of grains, methane production from wheat flour was the highest, followed by wheat, corn, tapioca, and then oat. Within the brans and hulls, soybean hull showed the highest methane production and cotton seed hull, the lowest. Methane production from oil meals was lower compared with grains and brans and hulls, and in decreasing order production from canola meal was followed by soybean meal, coconut meal, and corn germ meal (p<0.01). Three ingredients were selected and the interactions among feed ingredients were evaluated for methane production. Correlation coefficient between measured and estimated values of the combinations were 0.91. Methane production from each feed ingredient was decreased with increasing amount of crude fiber (CF), protein (CP) and ether extract (EE), whereas positive relationship was noted with the concentrations of N-free extract (NFE). The multiple regression equation (n=134) for methane production and nutrient concentrations was as follows. Methane production (ml/0.2 g DM)=(0.032${\times}$CP)-(0.057${\times}$EE)-(0.012${\times}$CF)+(0.124${\times}$NFE) (p<0.01; $R^2$=0.929). Positive relationship was noted for CP and NFE and negative relationship for CF and EE. It seems possible to predict methane production potential from nutritional composition of the ingredients for their effective application on formulating less methane emitting rations.

In vitro gas and methane production of some common feedstuffs used for dairy rations in Vietnam and Thailand

  • N. T. D., Huyen;J. Th. Schonewille;W. F. Pellikaan;N. X. Trach;W. H. Hendriks
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.481-491
    • /
    • 2024
  • Objective: This study determined fermentation characteristics of commonly used feedstuffs, especially tropical roughages, for dairy cattle in Southeast Asia. This information is considered relevant in the context of the observed low milk fat content and milk production in Southeast Asia countries. Methods: A total of 29 feedstuffs commonly used for dairy cattle in Vietnam and Thailand were chemically analysed and subjected to an in vitro gas production (GP) test. For 72 h, GP was continuously recorded with fully automated equipment and methane (CH4) was measured at 0, 3, 6, 9, 12, 24, 30, 36, 48, 60, and 72 h of incubation. A triphasic, nonlinear, regression procedure was applied to analyse GP profiles while a monophasic model was used to obtain kinetics related to CH4 production. Results: King grass and VA06 showed a high asymptotic GP related to the soluble- and non-soluble fractions (i.e. A1 and A2, respectively) and had the highest acetate to propionate ratio in the incubation fluid. The proportion of CH4 produced (% of GP at 72 h) was found to be not different (p>0.05) between the various grasses. Among the selected preserved roughages (n = 6) and whole crops (n = 4), sorghum was found to produce the greatest amount of gas in combination with a relatively low CH4 production. Conclusion: Grasses belonging to the genus Pennisetum, and whole crop sorghum can be considered as suitable ingredients to formulate dairy rations to enhance milk fat content in Vietnam/Thailand.

Diets with Different Forage/Concentrate Ratios for the Mediterranean Italian Buffalo: In vivo and In vitro Digestibility

  • Fabio, Zicarelli;Calabro, Serena;Piccolo, Vincenzo;D'Urso, Simona;Tudisco, Raffaella;Bovera, Fulvia;Cutrignelli, Monica I.;Infascelli, Federico
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • In vivo and in vitro digestibility of 6 diets with a forage to concentrate ratio (F/C) ranging from 100 to 50:50 (diet 1: all hay, diet 2: 90:10, diet 3: 80:20, diet 4: 70:30, diet 5: 60:40, diet 6: 50:50) were investigated using 6 buffaloes in a $6{\times}6$ Latin square design. For the in vivo trial, the individual faeces of buffaloes were collected 3 times per day for 7 days. Individual pooled faeces and samples of each diet were analysed for chemical composition and insoluble acid ash (AIA) contents in order to estimate the coefficient of apparent digestibility (ADC). On the last day of the in vivo trial a sample of faeces was collected from each animal and used as inoculum for the in vitro test, using the gas production technique (IVGPT). The in vivo organic matter digestibility (ADC) rose as the percentage of concentrate increased up to the 70:30 (F/C) diet (67.01, 73.03, 78.06 and 79.05, respectively for diets 1, 2, 3 and 4); the other two diets (60:40 and 50:50 F/C) unexpectedly did not follow this trend (75.11 and 79.06, respectively for diet 5 and 6). However, these data agree with the results of the in vitro trial. The ADC was positively correlated with the dOM (p<0.001), but not with the gas production at different times; cumulative gas production recorded at the end of incubation (OMCV) showed an irregular trend and was not closely correlated to degraded OM. Estimation of in vivo digestibility from in vitro fermentation data was acceptable, despite leaving room for improvement.

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

Investigation of Dietary Lysophospholipid (LipidolTM) to Improve Nutrients Availability of Diet with In Vitro Rumen Microbial Fermentation Test

  • Cho, Sangbuem;Kim, Dong Hyun;Hwang, Il Hwan;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • This study was conducted to investigate the effect of biological membrane transfer modifier, lysophospholipd (LPLs) on the parameters from in vitro rumen simulated fermentation. Commercially available LPLs product (Lipidol$^{TM}$) was supplemented into experimental diets which consisted of orchard grass and concentrate diet (60:40) in different levels (0.1%, 0.3% and 0.5%). Then in vitro rumen simulated fermentation was performed. Although, a declining trend of pH was found in treatments, all pH values were detected in a range relevant to normal rumen fermentation. Gas production, ammonia nitrogen and total VFA production were greatly influenced by the supplementation of LPLs. All parameters were increased along with increased levels of LPLs in diet. As a result, 0.1% of Lipidol$^{TM}$ is recommended based on the determined in vitro rumen fermentative parameters in this study.

Effects of Steam Flaking of Corns imported from USA and India on the in vitro Fermentation Characteristic and the Mycotixin Contents of Logistic Processing Line (미국산과 인도산 옥수수의 steam flaking 처리가 공정라인별 mycotoxin 함량의 변화와 in vitro 발효 특성에 미치는 영향)

  • Lee, Shin-Ja;Lee, Ji-Hun;Shin, Nyeon-Hak;Han, Jung-Hun;Hyun, Jong-Hwan;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • The objective of this study was to examine the effects of steam flaking treatment of corn grains imported from USA and India on in vitro gas production, microbial growth and contents of aflatoxin $B_1$ and ochratoxin A. Each treatment was composed of total 4 treatments including (1) USCW (US com-whole type), (2) USCF (US corn-flaked type), (3) IDCW (India corn-whole type) and (4) IDCF (India orn-flaked type) with 4 replications $\times$ 6 incubation times (3, 6, 9, 12, 18 and 24 hr). Mycotoxin (aflatoxin $B_1$ & ochratoxin A) contents in test corns tended to increase gradually with increasing logistics periods from the harbor, hopper, silo to processing line. The contents of aflatoxin $B_1$ in India corn (IDCW) and US corn (USCW) were 11.71 and 1.78 ppb, respectively when measured at the hopper. After steam flaking, both contents of aflatoxin $B_1$ in USCW and IDCW were 0.00 ppb. It means that Aspergillus flavus could be decreased by steam flaking. However, this trend was not observed in ochratoxin content. The gas production rate of USA corns (USCW & USCF) was significantly (p<0.05) higher than India corns (IDCW & IDCF), and that of steam flaked corns (USCF & IDCF) was higher $1.5{\sim}2%$ than whole corns (USCW & IDCW) after 3 hr incubation in in vitro experiment. pH value was optimally maintained for microbial growth during whole incubation times with the value of 6.05 to 6.54, and was not significantly different between treatments, but USCF was somewhat lower than other treatments. pH value decreased following 12 hr of incubation but gas production increased rapidly during the same period. In addition, in vitro microbial growth rates also increased with up to 18 hr of incubation period, thereafter experienced a decrease with extended incubation time. In conclusion, US corn was superior to India corn by origin based on the results of in vitro and mycotoxin contents. And steam flaking process of imported corns tended to decrease mycotoxin contents such as aflatoxin $B_1$ and ochratoxin A as well as improve in vitro gas production and microbial growth rates.

Antimicrobial Activity and Chemical Composition of Some Essential Oils

  • Arldogan, Buket-Cicioglu;Baydar, Hasan;Kaya, Selcuk;Demirci, Mustafa;Ozbasar, Demir;Mumcu, Ethem
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.860-864
    • /
    • 2002
  • In this study the composition and antimicrobial properties of essential oils obtained from Origanum onites, Mentha piperita, Juniperus exalsa, Chrysanthemum indicum, Lavandula hybrida, Rosa damascena, Echinophora tenuifolia, Foeniculum vulgare were examined. To evaluate the in vitro antibacterial activities of these eight aromatic extracts; their in vitro antimicrobial activities were determined by disk diffusion testing, according to the NCCLS criteria. Escherichia coli (ATTC 25922), Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATTC 27853 were used as standard test bacterial strains. Origanum onites recorded antimicrobial activity against all test bacteria, and was strongest against Staphylococcus aureus. For Rosa damascena, Mentha piperita and Lavandula hybrida antimicrobial activity was recorded only to Staphylococcus aureus. Juniperus exalsa, and Chrysanthemum indicum exhibited antibacterial activities against both Staphylococcus aureus and Escherichia coli. We also examined the in vitro artimicrobial activities of some components of the essential oils and found some components with antimicrobial activity.

Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

  • Wang, B.;Luo, Y.;Myung, K.H.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.832-840
    • /
    • 2014
  • This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures ($5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$) and four durations (0, 1, 2, and 3 d) were arranged in a $4{\times}4$ factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as $25^{\circ}C$ and $35^{\circ}C$. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds $35^{\circ}C$, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above $35^{\circ}C$ during summer.