• Title/Summary/Keyword: Inhalation toxicology

Search Result 140, Processing Time 0.025 seconds

LC50 Determination of tert-Butyl Acetate using a Nose Only Inhalation Exposure in Rats

  • Yang, Young-Su;Lee, Jin-Soo;Kwon, Soon-Jin;Seo, Heung-Sik;Choi, Seong-Jin;Yu, Hee-Jin;Song, Jeong-Ah;Lee, Kyu-Hong;Lee, Byoung-Seok;Heo, Jeong-Doo;Cho, Kyu-Hyuk;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2010
  • tert-Butyl acetate (TBAc) is an organic solvent, which is commonly used in architectural coatings and industrial solvents. It has recently been exempted from the definition of a volatile organic compound (VOC) by the Air Resources Board (ARB). Since the use of TBAc as a substitute for other VOCs has increased, thus its potential risk in humans has also increased. However, its inhalation toxicity data in the literature are very limited. Hence, inhalation exposure to TBAc was carried out to investigate its toxic effects in this study. Adult male rats were exposed to TBAc for 4 h for 1 day by using a nose-only inhalation exposure chamber (low dose, $2370\;mg/m^3$ (500 ppm); high dose, $9482\;mg/m^3$ (2000 ppm)). Shamtreated control rats were exposed to clean air in the inhalation chamber for the same period. The animals were killed at 2, 7, and 15 days after exposure. At each time point, body weight measurement, bronchoalveolar lavage fluid (BALF) analysis, histopathological examination, and biochemical assay were performed. No treatment-related abnormal effects were observed in any group according to time course. Based on those findings, the median lethal concentration ($LC_{50}$) of TBAc was over $9482\;mg/m^3$ in this study. According to the MSDS, the 4 h $LC_{50}$ for TBAc for rats is over $2230\;mg/m^3$. We suggested that this value is changed and these findings may be applied in the risk assessment of TBAc which could be beneficial in a sub-acute study.

Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

  • Saputra, Devina;Yoon, Jin-Ha;Park, Hyunju;Heo, Yongju;Yang, Hyoseon;Lee, Eun Ji;Lee, Sangjin;Song, Chang-Woo;Lee, Kyuhong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-${\gamma}$ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be $12.5{\mu}g/m^3$) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions.

Standardization of Bronchoalveolar Lavage Method Based on Suction Frequency Number and Lavage Fraction Number Using Rats

  • Song, Jeong-Ah;Yang, Hyo-Seon;Lee, Jin-Soo;Kwon, Soon-Jin;Jung, Kyung-Jin;Heo, Jeong-Doo;Cho, Kyu-Hyuk;Song, Chang-Woo;Lee, Kyu-Hong
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • Bronchoalveolar lavage (BAL) is a useful tool in researches and in clinical medicine of lung diseases because the BAL fluid contains biochemical and cytological indicators of the cellular response to infection, drugs, or toxicants. However, the variability among laboratories regarding the technique and the processing of the BAL material limits clinical research. The aim of this study was to determine the suction frequency and lavage fraction number necessary to reduce the variability in lavage using male Sprague-Dawley rats. We compared the total cell number and protein level of each lavage fraction and concluded that more cells and protein can be obtained by repetitive lavage with a suction frequency of 2 or 3 than by lavage with a single suction. On the basis of total cell recovery, approximately 70% of cells were obtained from fractions 1~3. The first lavage fraction should be used for evaluation of protein concentration because fractions 2~5 of lavage fluid were diluted in manifolds. These observations were confirmed in bleomycin-induced inflamed lungs of rats. We further compared the BAL data from the whole lobes with data from the right lobes and concluded that BAL data of the right lobes represented data of the whole lobes. However, this conclusion can only be applied to general lung diseases. At the end, this study provides an insight into the technical or analytical problems of lavage study in vivo.

Nasal and Pulmonary Toxicity of Titanium Dioxide Nanoparticles in Rats

  • Kwon, Soonjin;Yang, Young-Su;Yang, Hyo-Seon;Lee, Jinsoo;Kang, Min-Sung;Lee, Byoung-Seok;Lee, Kyuhong;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.217-224
    • /
    • 2012
  • In recent decades, titanium dioxide ($TiO_2$) nanoparticles have been used in various applications, including paints, coatings, and food. However, data are lacking on the toxicological aspects associated with their use. The aim of this study was to assess the inhalation toxicity of $TiO_2$ nanoparticles in rats by using inhalation exposure. Male Wistar rats were exposed to $TiO_2$ nanoparticles for 2 weeks (6 hr/day, 5 days/week) at a mean mass concentration of $11.39{\pm}0.31mg/m^3$. We performed time-course necropsies at 1, 7, and 15 days after exposure. Lung inflammation and injury were assessed on the basis of the total and individual cell counts in bronchoalveolar lavage fluid (BALF), and by biochemical assays, including an assay for lactate dehydrogenase (LDH). Furthermore, histopathological examination was performed to investigate the lungs and nasal cavity of rats. There were no statistically significant changes in the number of BALF cells, results of biochemical assays of BALF and serum, and results of cytokine analysis. However, we did observe histopathological changes in the nasal cavity tissue. Lesions were observed at post-exposure days 1 and 7, which resolved at post-exposure day 15. We also calculated the actual amounts of $TiO_2$ nanoparticles inhaled by the rats. The results showed that the degree of toxicity induced by $TiO_2$ nanoparticles correlated with the delivered quantities. In particular, exposure to small particles with a size of approximately 20 nm resulted in toxicity, even if the total particle number was relatively low.

Pulmonary Toxicity and Recovery from Inhalation of Manual Metal Arc Stainless Steel Welding Fumes in Rats

  • Yang, Mi-Jin;Kim, Jin-Sung;Yang, Young-Su;Cho, Jae-Woo;Choi, Seong-Bong;Chung, Yong-Hyun;Kim, Yong-Bum;Cho, Kyu-Hyuk;Lim, Chae-Woong;Kim, Choong-Yong;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • The objectives of this study were to examine the lung injury and inflammation caused by manual metal arc stainless steel(MMA-SS) welding fume inhalation and to evaluate the recovery process. Sprague-Dawley rats were exposed to MMA-SS welding fumes for 2 h per day in a whole-body exposure chamber, with a total suspended particulate(TSP) concentration of $51.4{\pm}2.8mg/m^3$(low dose) or $84.6{\pm}2.9mg/m^3$(high dose) for 30 days. The animals were sacrificed after 30 days of exposure as well as after a 30-day recovery period. To assess the inflammatory or injury responses, cellular and biochemical parameters as well as cytokines were assayed in the bronchoalveolar lavage fluid(BALF). MMA-SS welding fume exposure led to a significant elevation in the number of alveolar macrophages(AM) and polymorphonuclear cells(PMN). Additionary, the values of $\beta$-n-acetyl glucosaminidase($\beta$-NAG) and lactate dehydrogenase(LDH) in the BALF were increased in the exposed group when compared to controls. After 30 days of recovery from exposure, a significant reduction in inflammatory parameters of BALF was observed between the exposed and recovered groups. Slight, but significant elevations were noted in the number of AM and PMN in the recovered groups, and AM that had been ingested fume particles still remain in the lungs. In conclusion, these results indicated that welding fumes induced inflammatory responses and cytotoxicity in the lungs of exposed rats. Fume particles were not fully cleared from lungs even after a 30-day recovery period.

Dose-response Effects of Bleomycin on Inflammation and Pulmonary Fibrosis in Mice

  • Kim, Soo-Nam;Lee, Jin-Soo;Yang, Hyo-Seon;Cho, Jae-Woo;Kwon, Soon-Jin;Kim, Young-Beom;Her, Jeong-Doo;Cho, Kyu-Hyuk;Song, Chang-Woo;Lee, Kyu-Hong
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.217-222
    • /
    • 2010
  • Many studies have reported that bleomycin, anti-cancer drug, induces pulmonary fibrosis as a side effect. However, few investigations have focused on the dose-response effects of bleomycin on pulmonary fibrosis. Therefore, in the present study, we investigated the effects of different doses of bleomycin in male mice. ICR mice were given 3 consecutive doses of bleomycin: 1, 2, or 4 mg/kg in bleomycin-treated (BT) groups and saline only in vehicle control (VC) groups. The animals were sacrificed at 7 and 24 days postinstillation. The severity of pulmonary fibrosis was evaluated according to inflammatory cell count and lactate dehydrogenase (LDH) activity in the broncho alveolar lavage fluid (BALF), and lung tissues were histologically evaluated after hematoxylin and eosin (H&E), and Masson's trichrome staining. BT groups exhibited changed cellular profiles in BAL fluid compared to the VC group, which had an increased number of total cells, neutrophils, and lymphocytes and a modest increase in the number of macrophages at 7 days post-bleomycin instillation. Moreover, BT groups showed a dose-dependent increase in LDH levels and inflammatory cell counts. However, at 24 days after treatment, collagen deposition, interstitial thickening, and granulomatous lesions were observed in the alveolar spaces in addition to a decrease in inflammatory cells. These results indicate that pulmonary fibrosis induced by 4 mg/kg bleomycin was more severe than that induced by 1 or 2 mg/kg. These data will be utilized in experimental animal models and as basic data to evaluate therapeutic candidates through non-invasive monitoring using the pulmonary fibrosis mouse model established in this study.

Modification of Oropharyngeal Aspiration Technique for Mouse Using Syringe Pump

  • Kim, Jin-Sung;Yang, Mi-Jin;Han, Sung-Gu;Kim, Choong-Yong;Han, Sang-Sup;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • Respirable particles cause many occupational and environmental diseases of the lung. To study these diseases, laboratory animals are often exposed to these particles. Inhalation and instillation are the well-known techniques for experimental exposures of the lung to respirable particles. Recently, another technique called oropharyngeal aspiration (OPA) has been introduced for exposing the lung to pathogens and/or particles. The conventional OPA technique for the mouse is generally carried out using a micropipette with a fixed slant board. In order to modify the conventional OPA in this study, anesthetized mice were placed on an adjustable slant board, a syringe pump was used to deliver the solution to the oropharynx, and the mice were allowed to recover in vertically positioned tubes for 6 minutes until fully awaked. Most importantly, the whole process of OPA could be carried out simply by an examiner. This modified OPA technique was validated by exposing the mouse lung to Evans Blue dye with a success rate of 95%.

Inhalation Toxicity of 1-Bromoprpane (1-BP)

  • Kim, Hyeon-Yeong;Lee, Jun-Yeon;Lim, Cheol-Hong;Chung, Yong-Hyun;Han, Jung-Hee;Jeong, Jae-Hwang;Lee, Sung-Bae;Jhoon, Yoon-Sook;Lee, Yong-Muk
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.126-126
    • /
    • 2001
  • The purpose of this study was to investigate the acute(4 hrs) and repeated-dose(6 hrs a day, 5 days a week, 8 weeks) toxic effects of 1-bromopropane(1-BP) on Sprague-Dawley (SD) rats which were treated by inhalation. The results were as follows ;(omitted)

  • PDF

Study of a BALB/c Mouse Model for Allergic Asthma

  • Yang, Young-Su;Yang, Mi-Jin;Cho, Kyu-Hyuk;Lee, Kyu-Hong;Kim, Yong-Bum;Kim, Jin-Sung;Kang, Myung-Gyun;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.253-261
    • /
    • 2008
  • Allergic asthma is a worldwide public health problem and a major socioeconomic burden disease. It is a chronic inflammatory disease marked by airway eosinophilia and goblet cell hyperplasia with mucus hypersecretion. Mouse models have proven as a valuable tool for studying human asthma. In the present report we describe a comparison of mouse asthma models. The experiments were designed as follows: Group I was injected with ovalbumin (OVA, i.p.) on day 1 and challenged with 1% OVA (aerosol exposure) on days $14{\sim}21$. Group II was injected on day 1, 14 and aerosol-immunized on days $14{\sim}21$. Group III was injected on day 1, 14 and immunized by 1% OVA aerosol on days $18{\sim}21$. We assessed asthma induction by determining the total number of white blood cells (WBC) and eosinophils as well as by measuring cytokine levels in bronchoalveolar lavage fluid (BALF). In addition, we evaluated the histopathological changes of the lungs and determined the concentration of immunoglobulin E (IgE) in serum. Total WBC, eosinophils, Th2 cytokines (IL-4, IL-13) and IgE were significantly increased in group I relative to the other groups. Moreover, histopathological studies show that group I mice show an increase in the infiltration of inflammatory cell-in peribronchial and perivascular areas as well as an overall increase in the number of mucus-containing goblet cells relative to other groups. These data suggest that group I can be a useful model for the study of human asthma pathobiology and the evaluation of existing and novel therapeutic agents.

Subchronic Inhalation Toxicity of iso-Butylalcohol in Rats

  • Jang, Beom-Su;Lim, Jong-Hwan;Yun, Hyo-In;Park, Jong-Il;Ha, Chang-Su;Kim, Jong-Choon;Kim, Hyeon-Yeong;Chung, Yong-Hyun;Jeong, Jae-Hwang
    • Toxicological Research
    • /
    • v.16 no.4
    • /
    • pp.302-309
    • /
    • 2000
  • The purpose of this study is to investigate toxic effects of iso-butylalcohol (iBA) in Sprague-Dawley (SD) rats under the exposure of 6 hours a day, 5 days a week for 13 weeks by inhalation, and to evaluate the occupational safety of iBA in comparison with the permissible exposure level (PEL) stipulated by the Occupational Safety and Health Administration (OSHA). iBA did not induce any abnormal changes from the aspects of clinical signs, feed consumption, ophthalmic test, urinalysis, hematology and blood chemistry during and at the terminal of the inhalation toxicity tests. We did not find any abnormal findings in the gross and microscopic observations due to the inhalation of iBA. There was no alteration in relative organ weights by the inhalation of iBA. No observed adverse effect level (NOAEL) of iBA was considered to be more than 3,000 ppm in rats under the inhalation of 6 hours a day, 5 days a week for 13 weeks. Fifty ppm of iBA, the PEL regulated by OSHA, is too conservative for working places. As iBA showed no abnormal observations in all the experimental parameters at any concentration under this experimental condition, we suggest that 150 ppm is safe enough for the PEL of iBA in the working areas, even taking into onsideration that OSHA lowered the PEL to 50 ppm for fear of the probable risk of its skin irritation.

  • PDF