• Title/Summary/Keyword: Inhibitor kappa B

Search Result 300, Processing Time 0.028 seconds

NF-${\kappa}B$ Inhibitor Suppresses Hypoxia-induced Apoptosis of Mouse Pancreatic ${\beta}$-cell Line MIN6

  • Koh, Hyun Sook;Kim, Jae Young
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.14-24
    • /
    • 2014
  • Hypoxia is one of the main reasons for islet apoptosis after transplantation as well as during isolation. In this study, we attempted to determine the potential usefulness of NF-${\kappa}B$ inhibitor for suppression of hypoxia-induced ${\beta}$-cell apoptosis as well as the relationship between IP-10 induction and ${\beta}$-cell apoptosis in hypoxia. To accomplish this, we cultured the mouse pancreatic ${\beta}$-cell line MIN6 in hypoxia (1% $O_2$). Among several examined chemokines, only IP-10 mRNA expression was induced under hypoxia, and this induced IP-10 expression was due to NF-${\kappa}B$ activity. Since a previous study suggested that IP-10 mediates ${\beta}$-cell apoptosis, we measured hypoxia-induced IP-10 protein and examined the effect of anti-IP-10 neutralizing Ab on hypoxia-induced ${\beta}$-cell apoptosis. However, IP-10 protein was not detected, and anti-IP-10 neutralizing Ab did not rescue hypoxia-induced MIN6 apoptosis, indicating that there is no relationship between hypoxia-induced IP-10 mRNA expression and hypoxia-induced ${\beta}$-cell apoptosis. Since it was still not clear if NF-${\kappa}B$ functions as an apoptotic or anti-apoptotic mediator in hypoxia-induced ${\beta}$-cell apoptosis, we examined possible involvement of NF-${\kappa}B$ in hypoxia-induced ${\beta}$-cell apoptosis. Treatment with 1 ${\mu}M$ NF-${\kappa}B$ inhibitor suppressed hypoxiainduced apoptosis by more than 50%, while 10 ${\mu}M$ AP-1 or 4 ${\mu}M$ NF-AT inhibitor did not, indicating involvement of NF-${\kappa}B$ in hypoxia-induced ${\beta}$-cell apoptosis. Overall, these results suggest that IP-10 is not involved in hypoxia-induced ${\beta}$-cell apoptosis, and that NF-${\kappa}B$ inhibitor can be useful for ameliorating hypoxia-induced ${\beta}$-cell apoptosis.

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.219-240
    • /
    • 2009
  • Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

Kojic Acid, a Potential Inhibitor of NF-$textsc{k}$B Activation in Transfectant Human HaCaT and SCC-13 Cells

  • Moon, Ki-Young;Ahn, Kwang-Seok;Lee, Jin-seon;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.307-311
    • /
    • 2001
  • The activation of NF-$\kappa$B induced by kojic Acid, an inhibitor of tyrosinase for biosynthesis of melanin in melanocytes, was investigated in human transfectant HaCaT and SCC-13 cells. These two keratinocyte cell lines transfected with pNF-$\kappa$B-SEAP-NPT plasmid were used to determine the activation of NF-$\kappa$B. Transfectant cells release the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the NF-$\kappa$B activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selective marker of geneticin resistance. NF-$\kappa$B activation was measured in the SEAP reporter gene assay using a fluorescence detection method. Kojic Acid showed the inhibition of cellular NF-$\kappa$B activity in both human keratinocyte transfectants. It could also downregulate the ultraviolet ray (UVR)-induced activation of NF-$\kappa$B expression in transfectant HaCaT cells. Moreover, the inhibitory activity of kojic Acid in transfectant HaCaT cells was found to be more potent than known antioxidants, e.g., vitamin C and N~acetyl-L-cysteine. These results indicate that kojic Acid is a potential inhibitor of NF-$\kappa$B activation in human keratinocytes, and suggest the hypothesis that NF-$\kappa$B activation may be involved in kojic Acid induced anti-melanogenic effect.

  • PDF

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

S100A8 Induces Secretion of MCP-1, IL-6, and IL-8 via TLR4 in Jurkat T Cells

  • Nam, A Reum;Kim, Da Hae;Kim, Mun Jeong;Lee, Ji-Sook;Yang, Seung-Ju;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.22 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In the pathogenesis of inflammatory diseases such as allergies, S100A8 acts as an important molecule and T lymphocytes are essential cytokine-releasing cells. In this study, we investigated the effect of S100A8 on release of cytokines, specifically MCP-1, IL-6, and IL-8 in T cells, and its associated signaling mechanism. S100A8 increased secretion of MCP-1, IL-6, and IL-8 in a time- and dose-dependent manner. Elevated secretion of MCP-1, IL-6, and IL-8 due to S100A8 was inhibited by the TLR4 inhibitor TLR4i, the PI3K inhibitor LY294002, the $PKC{\delta}$ inhibitor rottlerin, the ERK inhibitor PD98059, the p38 MAPK inhibitor SB202190, the JNK inhibitor SP600125, and the NF-${\kappa}B$ inhibitor BAY-11-7085. S100A8 induced phosphorylation of ERK, p38 MAPK, and JNK in a time-dependent manner, and activation was suppressed by TLR4i, LY294002, and rottlerin. S100A8 induced NF-${\kappa}B$ activation by $I{\kappa}-B{\alpha}$ degradation, and NF-${\kappa}B$ activity was suppressed by PD98059, SB202190, and SP600125. These results indicate that S100A8 induces cytokine release via TLR4. Study of PI3K, $PKC{\delta}$, MAPKs, and NF-${\kappa}B$ will contribute to elucidation of the S100A8-invovled mechanism.

Degradation of the Transcription Factors NF-${\kappa}B$, STAT3, and STAT5 Is Involved in Entamoeba histolytica-Induced Cell Death in Caco-2 Colonic Epithelial Cells

  • Kim, Kyeong Ah;Min, Arim;Lee, Young Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.5
    • /
    • pp.459-469
    • /
    • 2014
  • Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-${\kappa}B$ (p65) in Caco-2 cells. However, $I{\kappa}B$, an inhibitor of NF-${\kappa}B$, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-${\kappa}B$ was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-${\kappa}B$ and STATs in colonic epithelial cells, which ultimately accelerates cell death.

Role of Protein Kinases on NE-$_{\kappa}B$ Activation and Cell Death in Bovine Cerebral Endothelial Cells

  • Ahn, Young-Soo;Kim, Chul-Hoon;Kim, Joo-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • Nuclear factor $_{\kappa}B\;(NF-_{\kappa}B)$ activation is modulated by various protein kinases. Activation of $NF-_{\kappa}B$ is known to be important in the regulation of cell viability. The present study investigated the effect of inhibitors of protein tyrosine kinase (PTK), protein kinase C (PKC) and protein kinase A (PKA) on $NF-_{\kappa}B$ activity and the viability of bovine cerebral endothelial cells (BCECs). In serum-deprivation-induced BCEC death, low doses of $TNF{\alpha}$ showed a protective effect. $TNF{\alpha}$ induced $NF-_{\kappa}B$ activation within 4 h in serum-deprivation. PTK inhibitors (herbimycin A and genistein) and PKC inhibitor (calphostin C) prevented $NF-_{\kappa}B$ activation stimulated by $TNF{\alpha}.$ Likewise, these inhibitors prevented the protective effect of $TNF{\alpha}.$ In contrast to $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activity, basal $NF-_{\kappa}B$ activity of BCECs in media containing serum was suppressed only by calphostin C, but not by herbimycin A. As well BCEC death was also induced only by calphostin C in serum-condition. H 89, a PKA inhibitor, did not affect the basal and $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activities and the protective effect of $TNF{\alpha}$ on cell death. These data suggest that modulation of $NF-_{\kappa}B$ activation could be a possible mechanism for regulating cell viability by protein kinases in BCECs.

  • PDF