• Title/Summary/Keyword: Injector configuration

Search Result 37, Processing Time 0.028 seconds

Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles (분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화)

  • Yongjin Jung;Jinyoung Jang;Choongsik Bae
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

Structural Design of Injector Head Part of 7ton class Thrust Chamber (7톤급 연소기 헤드부 구조설계)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Heo, Seong-Chan;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.249-252
    • /
    • 2012
  • Structural design of the injector head part of a 7ton class thrust chamber was preformed. Structural stability of an injector head part is a very important factor for a thrust chamber of a liquid rocket engine because it is loaded by high pressure of liquid oxidizer and fuel in addition to thrust load. Structural design requirements were first defined to design the injector head part of the 7ton class thrust chamber and the basic configuration was designed on the basis of the design requirements. A high strength steel that has been locally developed was applied to the injector head part of the thrust chamber. A total of twelve design configurations have been analyzed to select structurally the most stable design configuration.

  • PDF

The increase in the regression rate of hybrid rocket fuel by swirl flow and helical grain configuration (스월 유동과 나선형 그레인에 의한 하이브리드 로켓 연료의 연소율 향상)

  • Hwang, Yeong-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.63-69
    • /
    • 2006
  • Experimental tests have been done with swirl injector and helical grain configuration to increase the regression rate of hybrid rocket solid fuel. Two types of injector were designed to evaluate the swirl effect of oxidizer stream on the increase in the regression rate. Results showed Type II injector with swirl number of 3.61 induced the better regression rate than Type I injector. Meanwhile, fuels with two different pitch number of 6 and 100 were used to analyzes the flow characteristics on the enhancement of regression rate. Test with fuels of pitch 6 showed better increase in the regression rate than in the pitch 100 when no swirler was imposed. This is due to the generation of strong turbulences in the oxidizer stream along the pitch 6 configuration. However, the regression rate could be increased further in the fuel with pitch 100 than with pitch 6 when swirl flow was imposed by Type II injector. This result implied that the fuel with pitch 100 could take a role of sustainer of the imposed swirl by swirler II instead of turbulence generator.

A CFD ANALYSIS OF LIQUID PROPELLANT INJECTOR FOR PERFORMANCE ENHANCEMENT OF SMALL THRUSTER (소형 추진기의 성능 개선을 위한 액체 추진제 주입기의 전산유체해석)

  • Lee, Se-Min;Park, Soo-Hyung;Kim, Sung-Kyun;Byun, Do-Young;Yu, Myoung-Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.130-134
    • /
    • 2009
  • CFD analysis of the fuel injection pattern and the flow field surrounding the liquid propellant injector of a small thruster is performed. A good agreement is shown with PIV test data for the initial configuration. Analysis on various injector shapes is performed to observe the effect of injector shape on the trajectories of liquid droplet. A various shapes of injector is investigated to enhance spray pattern of the small injector.

  • PDF

Effects of Injection Configuration on Mixing in Supersonic Combustor

  • Sakamoto, Hayato;Matsuo, Akiko;Mitani, Tohru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.48-54
    • /
    • 2004
  • The effects of injector spacing s and injector diameter d on mixing are numerically investigated in supersonic combustor with perpendicular injection behind a backward-facing step. Simulations are reported for airstream Mach number of 2.4. Parameters are changed on following 4 cases to investigate the effects of injector configuration on mixing efficiency $\eta_m$. In the case of varying d or s, dynamic pressure ratio $Rq(=(pu^2)_j/(pu^2)_a)$ is also varied to keep bulk equivalence ratio $\Phi({\oe})Rq.d^2/s)$ constant. (l) Injector spacing s is varied at constant $\Phi$=0.5, 1, 2 for injector diameter d=6mm. In the case of $\Phi$=1, $\eta_m$ has its maximum value at s=24mm. The reason is that increase of $\eta_m$. , by widening spacing at Rq=constant competes with decrease of $\eta_m$ by increasing Rq at s=constant. When spacing is narrow, the flow field of vicinity of injector becomes two-dimensional because adjacent jets interferes each other. By widening spacing, air is easily entrained by three-dimensional effect. This mechanism also appears in the case of $\Phi$=0.5, 2 for d=6mm, and $\eta_m$. reaches its maximum value at s=24mm for $\Phi$=0.5 and at s=42mm for $\Phi$=2. (2) In the case of injector diameter d varied at $\Phi$=1 for s=30mm, $\eta_m$. has its maximum value at d=3mm. The reason is that decrease of $\eta_m$ by increasing injector diameter competes with increase of $\eta_m$ by decreasing Rq at d=constant.(3) In the case of s varied at $\Phi$=0.5, 1,2 for d=3mm, the injector spacing at which mixing efficiency has its maximum value is s= 18mm for $\Phi$=0.5, s=24mm for $\Phi$=1, s=24mm for $\Phi$=2. Therefore it is found that d=3mm and s=24mm can be optimum configuration over a range of $\Phi$=0.5~2.(4) The effect of h on the optimum spacing is investigated. s is varied for d=6mm at step height h=4, 6, 8mm. The simulation results do not show significant change on the step height.

  • PDF

A Fundamental Study on the Investigation of Bubbling Phenomenon in the Injector for the Development the LPDi Engine (액상 LPG 직접 분사식 기관 개발을 위한 인젝터 내 기포발생현상의 원인 규명에 관한 기초연구)

  • Noh, Ki-Chol;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • One of the most important subjects to develop a LPDi engine is to suppress the bubble generated inside the liquid LPG direct injector. For the purpose of this, the analogy visualization injector to visualize the generation and behaviors of bubble is manufactured, and the bubbling phenomenon and behaviors of bubble are visualized and investigated according to the change of the temperature around an injector wall, fuel pressure and a needle configuration. As results, it was found that the bubble inside the injector is generated around an injector hole and after rising by buoyancy it disappears around the top of a nozzle. The number of bubbles generated is little changed regardless of the lapse of time but it remarkably increases as the temperature around the injector increases. Also, it was known that as the sac volume in LPDi injector decreases the generation of bubble is more active and the rising velocity of bubble generated is increased.

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

Characteristics of Unielement Injector Combustion with Flow rates and Chamber Pressures (유량 및 연소압에 따른 액체로켓 단위분사기 연소특성 변화)

  • Moon Il-Yoon;Kim Jong-Gyu;Han Yeoung-Min;Yoo Jin;Lee Yang-Seok;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • In the case of appling a unielement injector developed for a full scale liquid rocket combustor, a operating condition or configuration of the injector is changed by combustion pressure, arrangement and injector quantity of a full scale liquid rocket combustor. In order to verify application, swirl coaxial injectors propelled by jet-A1 and liquid oxygen are tested at different conditions of a combustion pressure, a flowrate and an injector length. As a test result, the application of the present swirl coaxial injectors is excellent because an efficiency of a characteristic velocity is increased at the each test condition beyond that variation of dynamic pressure intensity is small.

  • PDF

Enhancement of hybrid rocket regression rate by swirl flow and helical grain configuration (선회류와 나선형 그레인 형상을 이용한 하이브리드 로켓의 연소율 향상)

  • Hwang Young-Chun;Lee Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.318-322
    • /
    • 2005
  • In this study the regression rate of hybrid rocket fuel has been investigated by swirl injectors and helical grains. Tests have been done with two kinds of injector and helical grain. In this paper the swirl injector and helical grain were varied to find the optimal condition to obtain the max regression rate for a given operational condition.

  • PDF

A Pseudo 3-Dimensional Structure of the Liquid-propellant Spray Emerging from Nonimpinging-type Injector (비충돌형 인젝터로부터 발생하는 액체추진제 분무의 준3차원 구조)

  • Jung, Hun;Kim, Jeong-Soo;Park, Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.17-24
    • /
    • 2010
  • This study was performed to make a close inquiry into a pseudo 3-dimensional structure of the liquid-propellant spray emerging from nonimpinging-type injector. Spray configuration near the injector exit was captured by a high-speed camera, and then its periodic phenomena (shedding) was observed. Detailed spatial structure of spray was investigated by spray characteristic parameters (velocity, diameter, volume flux, etc.) with the aid of a Dual-mode Phase Doppler Anemometry (DPDA). Experiment was carried out at various locations along the geometric axis of the nozzle orifice and on the plane normal to the spray stream with the injection pressures of 17.2 to 27.6 bar.