• 제목/요약/키워드: Insulin-signaling

검색결과 240건 처리시간 0.027초

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

Determination of Insulin Signaling Pathways in Hepatocytes

  • Kim, Sang-Kyum
    • Toxicological Research
    • /
    • 제21권3호
    • /
    • pp.195-208
    • /
    • 2005
  • Diabetes is a major cause of morbidity and mortality, and associated with a high risk of atherosclerosis, and liver, kidney, nerve and tissue damage. Defective insulin secretion in pancreas and/or insulin resistance in peripheral tissues is a central component of diabetes. It is well established that, regardless of the degree of muscle insulin resistance, glucose levels in diabetic and non-diabetic individuals are determined by the rate of hepatic glucose production. Moreover recently studies using liver-specific insulin receptor knockout mice show the paramount role of the liver in insulin resistance and diabetes. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. The first major section of this review defines the major insulin-mediated signaling pathways including phosphatidylinositol 3-kinase and mitogen activated protein kinases. The second major section of the review presents a summary and evaluation of methods for determination of the role and function of signaling pathways, including methods for determination of kinase phosphorylation, the use of pharmacological inhibitors of kinase and dominant-negative kinase constructs, and the application of new RNA interference methods.

Is Acetylation a Metabolic Rheostat that Regulates Skeletal Muscle Insulin Action?

  • LaBarge, Samuel;Migdal, Christopher;Schenk, Simon
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.297-303
    • /
    • 2015
  • Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.

Identification of Novel Metabolic Proteins Released by Insulin Signaling of the Rat Hypothalmus Using Liquid Chromatography-Mass Spectrometry (LC-MS)

  • Chin, Chur
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권6호
    • /
    • pp.470-474
    • /
    • 2007
  • Objective : The brain is dependent on glucose as an energy source. Intricate homeostatic mechanisms have been implicated in maintaining the blood glucose concentration in the brain. The aim of this study is to find the way to identify the metabolic proteins regulating the glucose in rat hypothalamus. Methods : In this study, we analysed the secretome from rat hypothalamus in vivo. We introduced 500 nM of insulin into the rat hypothalamus. The chromatographic patterns of the secretome were identified, after which Mass Spectrometry-Mass Spectrometry (MS-MS) analysis was performed. Results : In Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, 60 proteins were identified in the secretome. Among them, 8 novel proteins were unveiled and were associated with the energy metabolism of insulin signaling in mitochondria of rat hypothalamic neuron. Nineteen other proteins have unknown functions. These ligands were confirmed to be secreting from the rat hypothalmus on insulin signaling by western blotting. Conclusion : The hypothalamus is the master endocrine gland responsible for the regulation of various physiological and metabolic processes. Proteomics using LC-MS analysis offer a efficient means for generating a comprehensive analysis of hypothalamic protein expression by insulin signaling.

Insulin Receptor Substrate 1의 세린731 인산화 억제를 통한 살리실산의 인슐린저항성 개선효과 기전 (Salicylate Enhances Insulin Signaling by Preventing Ser731 Phosphorylation of Insulin Receptor Substrate 1)

  • 이용희
    • 약학회지
    • /
    • 제52권3호
    • /
    • pp.182-187
    • /
    • 2008
  • Salicylate (SA) was shown to alleviate insulin resistance. Here, we showed that SA inhibited Ser731 phosphorylation of insulin receptor substrate 1 (IRS1) and S6 kinase activation, and enhanced tyrosine phosphorylation of IRS1 in response to insulin or amino acid. Experiments using a cJun N-terminal kinase (JNK)-deficient cell and an IRS1 JNK-binding mutant showed that JNK is not required for Ser731 phosphorylation. A two-week treatment of obese mice with SA resulted in decreased Ser731 phosphorylation and enhanced insulin signaling. These results suggest that SA enhances insulin signaling by inhibiting Ser731 phosphorylation of IRS1.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • 제19권4호
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

생쥐 착상전 배아의 인슐린 신호전달 과정에 Phosphatidylinositol 3-Kinase의 관련성 (Involvement of Phosphatidylinositol 3-Kinase in the Insulin Signaling in Preimplantation Mouse Embryos)

  • Gye, Myung-Chan;Nah, Hee-Young;Kim, Moon-Kyoo
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권1호
    • /
    • pp.29-35
    • /
    • 2000
  • A phosphatidylinositol 3-kinase (PI3K)는 인슐린 신호전달의 상위구성 요소로 다양한 세포에서 단백질합성을 촉진한다. PI3K와 하위의 mammalian target of rapamycin (mTOR)가 착상전 생쥐 배아의 인슐린 신호전달에 관여하고 있는지의 여부를 조사하고자 하였다. 생쥐의 8-세포기 배아를 인슐린 또는 PI3K및 mTOR의 억제제를 포함한 조건에서 배양하면서 발생율, 할구수, 단백질합성 및 인산화를 조사하였다. 인슐린의 첨가는 포배형성과 부화 등 형태발생을 촉진하며 포배내 평균 할구수, 8-세포기 배아의 단백질 합성과 인산화를 유의하게 증가시켰다. PI3K의 억제제인 wortmannin과 mTOR를 억제하는 rapamycin은 인슐린에 의한 발생율, 포배내, 할구수, 단백질합성의 증가 효과를 상쇄하였다. 오토라디오그라피에서 두종의 인산화단백질인 pp22와 pp30의 인산화가 인슐린 처리에 의해 증가함을 확인하였다. 이상의 결과에서 생쥐 8-세포기 배아의 발생을 촉진하는 인슬린 신호의 전달에 PI3K와 mTOR가 관여함을 알 수 있다.

  • PDF

Pear pomace ethanol extract improves insulin resistance through enhancement of insulin signaling pathway without lipid accumulation

  • You, Mi-Kyoung;Kim, Hwa-Jin;Rhyu, Jin;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.198-205
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The anti-diabetic activity of pear through inhibition of ${\alpha}-glucosidase$ has been demonstrated. However, little has been reported about the effect of pear on insulin signaling pathway in obesity. The aims of this study are to establish pear pomace 50% ethanol extract (PPE)-induced improvement of insulin sensitivity and characterize its action mechanism in 3T3-L1 cells and high-fat diet (HFD)-fed C57BL/6 mice. MATERIALS/METHODS: Lipid accumulation, monocyte chemoattractant protein-1 (MCP-1) secretion and glucose uptake were measure in 3T3-L1 cells. Mice were fed HFD (60% kcal from fat) and orally ingested PPE once daily for 8 weeks and body weight, homeostasis model assessment of insulin resistance (HOMA-IR), and serum lipids were measured. The expression of proteins involved in insulin signaling pathway was evaluated by western blot assay in 3T3-L1 cells and adipose tissue of mice. RESULTS: In 3T3-L1 cells, without affecting cell viability and lipid accumulation, PPE inhibited MCP-1 secretion, improved glucose uptake, and increased protein expression of phosphorylated insulin receptor substrate 1 [p-IRS-1, ($Tyr^{632})$)], p-Akt, and glucose transporter type 4 (GLUT4). Additionally, in HFD-fed mice, PPE reduced body weight, HOMA-IR, and serum lipids including triglyceride and LDL-cholesterol. Furthermore, in adipose tissue, PPE up-regulated GLUT4 expression and expression ratio of p-IRS-1 ($Tyr^{632})/IRS$, whereas, down-regulated p-IRS-1 ($Ser^{307})/IRS$. CONCLUSIONS: Our results collectively show that PPE improves glucose uptake in 3T3-L1 cells and insulin sensitivity in mice fed a HFD through stimulation of the insulin signaling pathway. Furthermore, PPE-induced improvement of insulin sensitivity was not accompanied with lipid accumulation.

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Dual function of MG53 in membrane repair and insulin signaling

  • Tan, Tao;Ko, Young-Gyu;Ma, Jianjie
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.414-423
    • /
    • 2016
  • MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine.