• Title/Summary/Keyword: Interaction Features

Search Result 715, Processing Time 0.036 seconds

Addressing the Item Cold-Start in Recommendation Using Similar Warm Items (유사 아이템 정보를 이용한 콜드 아이템 추천성능 개선)

  • Han, Jungkyu;Chun, Sejin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1673-1681
    • /
    • 2021
  • Item cold start is a well studied problem in the research field of recommender systems. Still, many existing collaborative filters cannot recommend items accurately when only a few user-item interaction data are available for newly introduced items (Cold items). We propose a interaction feature prediction method to mitigate item cold start problem. The proposed method predicts the interaction features that collaborative filters can calculate for the cold items. For prediction, in addition to content features of the cold-items used by state-of-the-art methods, our method exploits the interaction features of k-nearest content neighbors of the cold-items. An attention network is adopted to extract appropriate information from the interaction features of the neighbors by examining the contents feature similarity between the cold-item and its neighbors. Our evaluation on a real dataset CiteULike shows that the proposed method outperforms state-of-the-art methods 0.027 in Recall@20 metric and 0.023 in NDCG@20 metric.

A Study on the Expression of Features Interaction (특징 형상의 간섭 표현에 대한 연구)

  • 김경영;이수홍;고희동;김현석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.142-149
    • /
    • 1997
  • This study is intended to develop a Feature based modeler. It is difficult to integrate CAD and CAM/CAPP with information that is given only by a conventional CAD system. Therefore a lot of studies have concentrated on a Feature based CAD system. But conventional Feature based modelers have had limitation on providing sufficient information related to Feature interaction. If a Feature based modeler is to be used in assembly simulation, a new Feature-based modeling method needs to be developed. Also to support collision detection between parts, we have to handle Feature interaction systematically. Therefore we suggest Cell data structure which handles interaction of Features by volume. The volume created by Feature interaction is saved as a Cell. With the Cell structure we solve problems involved with Feature interaction. This study shows how the Cell data structure can manage Feature interaction and give enough information in assembly simulation.

  • PDF

Nonlinear Interaction between Consonant and Vowel Features in Korean Syllable Perception (한국어 단음절에서 자음과 모음 자질의 비선형적 지각)

  • Bae, Moon-Jung
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.29-38
    • /
    • 2009
  • This study investigated the interaction between consonants and vowels in Korean syllable perception using a speeded classification task (Garner, 1978). Experiment 1 examined whether listeners analytically perceive the component phonemes in CV monosyllables when classification is based on the component phonemes (a consonant or a vowel) and observed a significant redundancy gain and a Garner interference effect. These results imply that the perception of the component phonemes in a CV syllable is not linear. Experiment 2 examined the further relation between consonants and vowels at a subphonemic level comparing classification times based on glottal features (aspiration and lax), on place of articulation features (labial and coronal), and on vowel features (front and back). Across all feature classifications, there were significant but asymmetric interference effects. Glottal feature.based classification showed the least amount of interference effect, while vowel feature.based classification showed moderate interference, and place of articulation feature-based classification showed the most interference. These results show that glottal features are more independent to vowels, but place features are more dependent to vowels in syllable perception. To examine the three-way interaction among glottal, place of articulation, and vowel features, Experiment 3 featured a modified Garner task. The outcome of this experiment indicated that glottal consonant features are independent to both the place of articulation and vowel features, but the place of articulation features are dependent to glottal and vowel features. These results were interpreted to show that speech perception is not abstract and discrete, but nonlinear, and that the perception of features corresponds to the hierarchical organization of articulatory features which is suggested in nonlinear phonology (Clements, 1991; Browman and Goldstein, 1989).

  • PDF

Utilizing Various Natural Language Processing Techniques for Biomedical Interaction Extraction

  • Park, Kyung-Mi;Cho, Han-Cheol;Rim, Hae-Chang
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.459-472
    • /
    • 2011
  • The vast number of biomedical literature is an important source of biomedical interaction information discovery. However, it is complicated to obtain interaction information from them because most of them are not easily readable by machine. In this paper, we present a method for extracting biomedical interaction information assuming that the biomedical Named Entities (NEs) are already identified. The proposed method labels all possible pairs of given biomedical NEs as INTERACTION or NO-INTERACTION by using a Maximum Entropy (ME) classifier. The features used for the classifier are obtained by applying various NLP techniques such as POS tagging, base phrase recognition, parsing and predicate-argument recognition. Especially, specific verb predicates (activate, inhibit, diminish and etc.) and their biomedical NE arguments are very useful features for identifying interactive NE pairs. Based on this, we devised a twostep method: 1) an interaction verb extraction step to find biomedically salient verbs, and 2) an argument relation identification step to generate partial predicate-argument structures between extracted interaction verbs and their NE arguments. In the experiments, we analyzed how much each applied NLP technique improves the performance. The proposed method can be completely improved by more than 2% compared to the baseline method. The use of external contextual features, which are obtained from outside of NEs, is crucial for the performance improvement. We also compare the performance of the proposed method against the co-occurrence-based and the rule-based methods. The result demonstrates that the proposed method considerably improves the performance.

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

A study of wind turbine power generation and turbine/tower interaction using large eddy simulation

  • Howard, R.J.A.;Pereira, J.C.F.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.95-108
    • /
    • 2006
  • Wind turbines are highly complex structures for numerical flow simulation. They normally comprise of a turbine mounted on a tower thus the movement of the turbine blades and the blade/tower interaction must be captured. In addition the ground effect should also be included. There are many more important features of wind turbines and it is difficult to include all of them. A simplified set of features is chosen here for both the turbine and the tower to show how the method can begin to identify the main points connected with wind turbine wake generation and tip vortex tower interaction. An approach to modelling the rotating blades of a turbine is proposed here. The model uses point forces based on blade element theory to model the blades and takes into account their time dependent motion. This means that local instantaneous velocities can be used as a basis for the blade element theory. The model is incorporated into a large eddy simulation code and, although many important features are left out of the model, the velocity/power performance relation is generally of the correct order of magnitude. Suggested improvements to the method are discussed.

An Outlook for Interaction Experience in Next-generation Television

  • Kim, Sung-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.557-565
    • /
    • 2012
  • Objective: This paper focuses on the new trend of applying NUI(natural user interface) such as gesture interaction into television and investigates on the design improvement needed in application. The intention is to find better design direction of NUI on television context, which will contribute to making new features and behavioral changes occurring in next-generation television more practically usable and meaningful use experience elements. Background: Traditional television is rapidly evolving into next-generation television thanks to the influence of "smartness" from mobile domain. A number of new features and behavioral changes occurred from such evolution are on their way to be characterized as the new experience elements of next-generation television. Method: A series of expert review by television UX professionals based on AHP (Analytic Hierarchy Process) was conducted to check on the "relative appropriateness" of applying gesture interaction to a number of selected television user experience scenarios. Conclusion: It is critical not to indiscriminately apply new interaction techniques like gesture into television. It may be effective in demonstrating new technology but generally results in poor user experience. It is imperative to conduct consistent validation of its practical appropriateness in real context. Application: The research will be helpful in applying gesture interaction in next-generation television to bring optimal user experience in.

Numerical investigation of the unsteady flow of a hybrid CRP pod propulsion system at behind-hull condition

  • Zhang, Yuxin;Cheng, Xuankai;Feng, Liang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.918-927
    • /
    • 2020
  • Flows induced by hybrid CRP pod propulsion systems (CRP-POD) are fundamentally characterized by unsteadiness. This work presents a numerical study on the unsteady flow of a CRP-POD at behind-hull condition based on CFD (Computational Fluid Dynamics). Unsteady RANS method is adopted, coupled with SST k-u turbulence model and sliding mesh method. The propeller thrusts and torques obtained by CFD is validated by model tests and acceptable agreements are obtained. The time histories of shingle-blade loads and pressures near the hull surface are recorded for the analysis of unsteady flow features. The cases of forward propeller alone and aft propeller alone are also computed to distinguish the hull-propeller interaction and propeller-propeller interaction. The results show the blade loads of both forward and aft propellers strongly fluctuate with phase angles. For the forward propeller, the blade load fluctuation is mainly governed by the hull-propeller interaction, while the aft blade load is remarkably affected by the propeller-propeller interaction in terms of the load average and fluctuation pattern. The fields of pressure, vorticity and velocity are also analyzed to reveal the unsteady flow features.