• Title/Summary/Keyword: Interfacial energy

Search Result 624, Processing Time 0.033 seconds

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.

Effect of surface toughness on the interfacial adhesion energy between glass wafer and UV curable polymer for different surface roughness (표면거칠기에 따른 글래스 웨이퍼와 UV 경화 폴리머사이의 계면접착 에너지 평가)

  • Jang, Eun-Jung;Hyun, Seoung-Min;Choi, Dae-Geun;Lee, Hak-Joo;Park, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.40-44
    • /
    • 2008
  • The interfacial adhesion energy between resist and a substrate is very important due to resist pull-off problems during separation of mold from a substrate in nanoimprint process. And effect of substrate surface roughness on interfacial adhesion energy is very important. In this paper, we have treated glass wafer surface using $CF_4$ gas for increase surface roughness and it has tested interfacial adhesion properties of UV resin/glass substrate interfaces by 4 point bending test. The interfacial adhesion energies by bare, 30, 60 and 90 sec surface treatments are 0.62, 1.4, 1.36 and 2 $J/m^2$, respectively. The test results showed quantitative comparisons of interfacial fracture energy (G) effect of glass wafer surface roughness.

  • PDF

Evaluation of Fracture Toughness by Energy Release Rate for Interface Crack in Adhesively Bonded Joints (에너지 방출률에 의한 접착이음의 계면균열에 대한 파괴인성의 평가)

  • Jeong, Nam-Yong;Lee, Myeong-Dae;Gang, Sam-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2174-2183
    • /
    • 2000
  • In this paper, the evaluation method of interfacial fracture toughness to apply the fracture toughness was investigated in adhesively bonded joints of AI/Ced./A1. Four types of adhesively bonded double-cantilever beam(DCB) joints with the interface crack were prepared for the test of interfacial fracture toughness. The experiments to measure the interfacial fracture toughness were performed under the various mixed-mode conditions. The critical energy release rate, Gc, was obtained by the experimental measurement of compliances. From the experimental results, the interfacial fracture toughness for the mixed-mode specimens is well characterized by the energy release rate, and the method of strength evaluation by the interfacial fracture toughness was discussed in adhesively bonded joints.

Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods (수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정)

  • Park, Gyuryeong;An, Hyejin;Kim, Seon-ok;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.

Adhesion Characteristics of Surface Treated Polyurethane Foam Core Sandwich Structures (표면 처리된 폴리우레탄 폼 샌드위치 구조의 접합 특성)

  • Lee, Chang-Sup;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.38-43
    • /
    • 2001
  • The interfacial adhesive joining characteristics of the foams are very important for the structural integrity of sandwich structures. Peel strength is one of the best criteria for the interfacial characteristics of the sandwich structures and peel energy is most commonly used for the interfacial characteristics. The peel strength is the first peak force per unit width of bond line required to produce progressive separation by the wedge or other crack opening type action of two adherends where one or both undergo significant bending and the peel energy is the surface active energy per unit width of bond line. In this work, to investigate the strengthening effect of resin treatment on the interfacial surface of foam material, peel strength and peel energy of epoxy resin treated polyurethane foam core sandwich structures were obtained by the cleavage peel tests and compared with those of non surface treated polyurethane foam core sandwich structures.

  • PDF

Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries

  • Hong, Sukhyun;Jo, Hyuntak;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.116-120
    • /
    • 2015
  • Lithium diffusivity of fluorine-free and -doped tin-nickel (Sn-Ni) film model electrodes with improved interfacial (solid electrolyte interphase (SEI)) stability has been determined, utilizing variable rate cyclic voltammetry (CV). The method for interfacial stabilization comprises fluorine-doping on the electrode together with the use of electrolyte including fluorinated ethylene carbonate (FEC) solvent and trimethyl phosphite additive. It is found that lithium diffusivity of Sn is largely dependent on the fluorine-doping on the Sn-Ni electrode and interfacial stability. Lithium diffusivity of fluorine-doped electrode is one order higher than that of fluorine-free electrode, which is ascribed to the enhanced electrical conductivity and interfacial stabilization effect.

Measurement of Crack Length by Ultrasonic Attenuation Coefficients on Interfaces of Al/Epoxy Bonded Dissimilar Materials (Al/Epoxy 이종재 접합 계면의 초음파 감쇠계수에 의한 균열길이의 측정)

  • Park, Sung-Il;Chung, Nam-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1109-1114
    • /
    • 2003
  • The initial crack often occurs on the bonded interface and it is the general cause of the interface fracture. It is very significant to establish the measurement method of interfacial crack by applying the ultrasonic technology into the interface of bonded dissimilar materials. In this paper, the interfacial crack length was measured by ultrasonic attenuation coefficient in the Al/Epoxy bonded dissimilar materials of double-cantilever beam(DCB). The energy release rate, G, was obtained by the experimental and Ripling's equation measurement of compliance. The experimental results represent that the relation between interfacial crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the experimental results, a measurement method of the interfacial crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

A Study on Improvement of Interfacial Adhesion Energy of Inkjet-printed Ag Thin film on Polyimide by CF4 Plasma Treatment (CF4플라즈마 처리에 의한 잉크젯 프린팅 Ag박막과 폴리이미드 사이의 계면파괴에너지 향상에 관한 연구)

  • Park, Sung-Cheol;Cho, Su-Hwan;Jung, Hyun-Cheol;Joung, Jae-Woo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.215-221
    • /
    • 2007
  • The effect of $CF_4$ plasma treatment condition on the interfacial adhesion energy of inkjet printed Ag/polyimide system is evaluated from $180^{\circ}$ peel test by calculating the plastic deformation energy of peeled metal films. Interfacial fracture energy between Ag and as-received polyimide was 5.5 g/mm. $CF_4$ plasma treatment on the polyimide surface enhanced the interfacial fracture energy up to 17.6 g/mm. This is caused by the increase in the surface roughness as well as the change in functional group of the polyimide film due to $CF_4$ plasma treatment on the polyimide surface. Therefore, both the mechanical interlocking effect and the chemical bonding effect are responsible for interfacial adhesion improvement in ink jet printed Ag/polyimide systems.

DETECTION OF INTERFACIAL CRACK LENGTH BY USING ULTRASONIC ATTENUATION COEFFICIENTS ON ADHESIVELY BONDED JOINTS

  • Chung, N.Y.;Park, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an interfacial crack length has been detected by using the ultrasonic attenuation coefficient on the adhesively bonded double-cantilever beam (DCB) joints. The correlations between energy release rates which were investigated by experimental measurement, the boundary element method (BEM) and Ripling's equation are compared with each other. The experimental results show that the interfacial crack length for the ultrasonic attenuation coefficient and energy release rate increases proportionally. From the experimental results, we propose a method to detect the interfacial crack length by using the ultrasonic attenuation coefficient and discuss it.

Mehods of Fracture Toughness and Evaluation for Interface Crack in Adhesively Bonded Joints (접착이음의 계면균열에 대한 파괴인성 및 평가방법)

  • 정남용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.220-226
    • /
    • 1998
  • In this pater, a method of strength evaluation applying fracture mechanics in adhesively bonded joints of A1/A1 materials was investigated. Various adhesively bonded joints of double-cantilever beam with a interfacial crack in its adhesive layer were prepared for the fracture toughness test of comprehensive mixed mode conditions from nearly pure mode I to mode II. The experiment of fracture toughness was carried out under various mixed mode conditions with an interfacial crack and critical energy release rate, Gc by the experimental measurements of compliances was determined. From the results, fracture toughness on mixed mode with an interfacial crack is well characterized by strain energy release rate and a method of strength evaluation by the fracture toughness in adhesively bonded joints of A1/A1 materials was discussed.

  • PDF