• Title/Summary/Keyword: Intracellular calcium mobilization

Search Result 57, Processing Time 0.019 seconds

Thimerosal generates superoxide anion by activating NADPH oxidase: a mechanism of thimerosal-induced calcium release

  • Kim, Eui-Kyung;Ryu, Sung-Ho;Suh, Pann-Ghill
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.229-235
    • /
    • 2002
  • Thimerosal, a widely used preservative, has been well known to induce intracellular calcium mobilization in various cell types. However, the mechanism of its calcium mobilization is not clearly understood yet. For studying the mechanism of thimerosal-mediated calcium release, we have used HL60 cells in calcium-free Lockes solution that has no extracellular calcium. Thimerosal significantly reduced the lag period of initial calcium release whereas it enhanced the rate and magnitude of the calcium release in a dose-dependent manner. At the same time, we found that thimerosal generated superoxide anion by activating NADPH oxidase in dose- and time-dependent manner. Interestingly, the kinetics and the dosedependency of superoxide anion generation were very similar to those of intracellular calcium mobilization. In inhibitors study, the thimerosal-induced superoxide anion generation was significantly suppressed by DMSO as well as superoxide dismutase but not by genistein or EGTA. Surprisingly, the pretreatment with N-Acetyl-$_{L}$-Cysteine blocked almost completely the thimerosal-induced calcium increase, indicating that ROS playa key role in the calcium mobilization. The present results suggest that thimerosal-induced calcium mobilization is possibly mediated by the activation of NADPH oxidase and subsequent ROS generation.n.

  • PDF

Study on the Action by PAF on IL-1 Modulation in Alveolar Macrophages: Involvement of Endogenous Arachidonate Metabolites and Intracellular $Ca^{++}$ Mobilization

  • Lee, Ji-Hee;Kim, Won-Ki;Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.241-249
    • /
    • 1998
  • Platelet-activating factor(PAF) enhanced interleukin-1(IL-1) activity by the interaction with a specific receptor in rat alveolar macrophages. In this study, we investigated the role of endogenous arachidonate metabolites and intracellular calcium mobilization in the PAF-induced IL-1 activity. Alveolar macrophages were preincubated with 5-lipoxygenase and cyclooxygenase inhibitors 30 min before the addition of PAF and lipopolysaccharide(LPS). After 24h culture, IL-1 activity was measured in the supernate of sample using the thymocyte proliferation assay. Inhibition of 5-lipoxygenase by nordihydroguaiaretic acid and AA-861 completely blocked the PAF-induced enhancement of IL-1 activity with $IC_{50}\;of\;2\;{\mu}M\;and\;5\;{\mu}M$, respectively. In contrast, the inhibition of cyclooxygenase pathway by indomethacin and ibuprofen resulted in the potentiation in PAF-induced IL-1 activity with maximal effect at $1\;{\mu}M\;and\;5\;{\mu}M$, respectively. In addition, leukotriene $B_4$ and prostaglandin $E_2$ production were observed in PAF-stimulated alveolar macrophage culture. As could be expected, 5-lipoxygenase and cyclooxygenase inhibitors abolished PAF- stimulated leukotriene $B_4$ and prostaglandin $E_2$ production, respectively. The effects of PAF on intracellular calcium mobilization in alveolar macrophages were evaluated using the calcium-sensitive dye fura-2 at the single cell level. PAF at any dose between $10^{-16}\;and\;10^{-8}$ M did not increase intracellular calcium. Furthermore, there was no effective change of intracellular calcium level when PAF was added to alveolar macrophages in the presence of LPS or LPS+LTB4, and 4, 24 and 48h after treatment of these stimulants. Together, the results indicate that IL-1 activity induced by PAF is differently regulated through subsequent induction of endogenous 5-lipoxygenase and cyclooxygenase pathways, but not dependent on calcium signalling pathway.

  • PDF

Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1 (Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

Potential Effects of Ginseng Saponin Fractions on Macrophage Chemotaxis and Intracellular Calcium and Actin Mobilization (대식세포의 화학주성과 세포내 칼슘과 Actin의 증가에 미치는 인삼사포닌 성분의 영향)

  • Shin, Eun-Kyoung;Kim, Sei-Chang
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.39-47
    • /
    • 1998
  • In the present study, We have tested the potential effects of ginseng saponin fractions on macrophage chemotaxis and intracellular calcium and F-actin mobilization. Peritoneal macrophages treated with various ginseng saponin fractions showed 28.4% to 71% of increasement of chemotaxis as compared with untreated cells. The activity of intracelluar calcium mobilization was increased up to 65% by treatment with saponins, and F-actin content also increased 10% in the cells loaded with NBD-phallacidin. When the cells were activated with calcium of PMA and treated with saponin fractions, the intracelluar F-actin content increased significantly and prolonged for 2 minutes. These results suggest that ginseng saponin fractions might be a chemoattractants.

  • PDF

Activation of Phospholipase D in Rat Thymocytes by Sphingosine

  • Lee, Young-kyun;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1451-1489
    • /
    • 2002
  • Sphingosine is known to regulate a wide range of cell physiology including growth, differentiation, and apoptosis. In this study, we examined the effect of sphingosine on the phospholipase D (PLD) activity in rat thymocytes. Sphingosine potently stimulated PLD in the absence of extracellular calcium, while depletion of intracellular calcium by BAPTA/AM treatment completely blocked activation of PLD by sphingosine. Sphingosine-induced increase of the intracellular calcium concentration was confirmed using a fluorescent calcium indicator Fluo-3/AM. A phosphoinositide-specific phospholipase C inhibitor U73122 partially inhibited the stimulation of PLD by sphingosine. When mouse PLD2 gene was transfected into mouse thymoma EL4 cells, which lack intrinsic PLD activity, sphingosine could stimulate PLD2 significantly while overexpression of human PLD1 had no effect. Taken together, the sphingosine-stimulated PLD activity in rat thymocytes is dependent on the mobilization of intracellular calcium and appears to be due to the PLD2 isoform.

Effects of Exogenous ATP on Calcium Mobilization and Cell Proliferation in C6 Glioma Cell

  • Lee, Eun-Jung;Cha, Seok-Ho;Lee, Woon-Kyu;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.419-425
    • /
    • 1998
  • To clarify the effect of extracellular ATP in cultured C6 glioma cells, ATP-induced cytosolic free calcium ($[Ca^{2+}]_i$) mobilization and cell proliferation were investigated. ATP-induced $[Ca^{2+}]_i$ increased in a dose-dependent manner $(10^{-7}\;M{\sim}10^{-3}\;M)$. ATP-induced $[Ca^{2+}]_i$ increases were slightly slowed in extracellular calcium-free conditions especially in sustained phase. ATP-induced $[Ca^{2+}]_i$ increment was also inhibited by the pretreatment of U73122, a phospholipase C (PLC) inhibitor, in a time-dependent manner. Suramin, a putative $P_{2Y}$ receptor antagonist, dose-dependently weakened ATP-induced $[Ca^{2+}]_i$ mobilization. Significant increases in cell proliferation were observed at 2, 3, and 4 days after ATP was added. Stimulated cell proliferation was also observed with adenosine at days 2 and 3. This cell proliferation was significantly inhibited by the treatment with suramin. Ionomycin also stimulated cell proliferation in a concentration-dependent manner. In conclusion, we suggest that extracellular ATP stimulates C6 glioma cell proliferation via intracellular free calcium mobilization mediated by purinoceptor.

  • PDF

Characteristics of Purinergic Receptor Expressed in Human Retinoblastoma Cells

  • Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.333-339
    • /
    • 2007
  • Recently, much attention has been paid to human retinoblastoma since it provide a good model system for studying mechanisms underlying cell growth, differentiation, proliferation, and apoptosis, and for developing cancer therapy. However, until now it is unclear whether purinergic receptors are involved in the calcium mobilization in the retinoblastoma cells. In this regard, we measured possible purinergic signaling in WERI-Rb-1 cells using $Ca^{2+}$ imaging technique and RT-PCR method. ATP-induced $[Ca^{2+}]_i$ transients was maintained to about $90.7{\pm}1.0%$ of the control (n=48) even in the absence of extracellular calcium. The ATP-induced intracellular calcium response was only attained to $10.4{\pm}1.8%$ (n=55) of peak amplitude of the control after preincubation of 1 ${\mu}MU-73122$, a PLC inhibitor, but it was not affected by 1 ${\mu}MU-73343$, a inactive form of U-73122. And also ATP-induced $[Ca^{2+}]_i$ rise was almost attenuated by 20 ${\mu}M$ 2-APB, a putative $IP_3$ receptor inhibitor. Two subtypes of $IP_3$ receptor $(IP_{3-1}R,\;IP_{3-2}R)$ were identified by a RT-PCR method. These findings suggest that purinergic stimuli can cause calcium mobilization via $PLC-IP_3$ pathway after the activation of P2Y receptors in the retinoblastoma cells, which may play important roles in cell proliferation, differentiation, growth, and cell death.

  • PDF

Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings

  • Kim, Seung-Jin;Choi, Ho-Jung;Jung, Chung-Hwan;Park, Sung-Soo;Cho, Seung-Rye;Oh, Se-Jong;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.787-794
    • /
    • 2010
  • Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR$\gamma$ and LXR$\alpha$, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR$\gamma$ and LXR$\alpha$ expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR$\gamma$ and LXR$\alpha$. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR$\gamma$ and LXR$\alpha$, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.

Antiplatelet Effect of Cudraxanthone L Isolated from Cudrania tricuspidata via Inhibition of Phosphoproteins

  • Shin, Jung-Hae;Rhee, Man Hee;Kwon, Hyuk-Woo
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.295-302
    • /
    • 2020
  • Cudrania tricuspidata (C. tricuspidata) is a deciduous tree found in Japan, China and Korea. The root, stems, bark and fruit of C. tricuspidata has been used as traditional herbal remedies such as eczema, mumps, acute arthritis and tuberculosis. In this study, we investigated the potential efficacies of this natural compound by focusing on the inhibitory effect of cudraxanthone L (CXL) isolated from the roots of C. tricuspidata on human platelet aggregation. Our study focused on the action of CXL on collagen-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding, intracellular calcium mobilization, fibronectin adhesion, dense granule secretion, and thromboxane A2 secretion. In addition, we investigated the inhibitory effect of CXL on thrombin-induced clot retraction. Our results showed that CXL inhibited collagen-induced human platelet aggregation, intracellular calcium mobilization, fibrinogen binding, fibronectin adhesion and clot retraction without cytotoxicity. Therefore, we confirmed that CXL has inhibitory effects on human platelet activities and has potential value as a natural substance for preventing thrombosis.

The Effects of Ginseng Components on the Signal Transduction in the Activation of Murine Macrophages (생쥐 대식세포의 활성시 신호전달에 미치는 인삼성분들의 영향)

  • 신은경;박한우
    • Journal of Ginseng Research
    • /
    • v.20 no.2
    • /
    • pp.159-167
    • /
    • 1996
  • To study the effects of ginseng saponin components on the signal transduction in the ac tivation of murine macrophages, phagocytosis and Intracellular calcium concentration of peritoneal exuded mouse macrophages were examined. The phagocytosis was increased significantly after treatment with total saponin, diol-saponin, $Rg_1$ and $Rg_2$, but triol-saponin was unable to increase phagocytosis. The phagocytosis were increased when H7, a PKC inhibitor, was pretreated and increased significantly by saponin fractions except total saponin. Pertussis toxin, which inactivates G-protein, decreased the phagocytosis. But the phagocytosis was restored to the control level by saponin fractions and the phagocytosis was increased significantly by $Rg_2$ and $Rg_2$. The triol saponin increased phagocytosis approximately by 2-fold as compared with the TMB-8 treated group. Peritoneal exuded macrophages displayed a prominent rise in cytosolic calcium following treatment with triol-saponin, $Rg_1$, $Rg_2$ and $Rg_2$. Incubation of macrophages with PT resulted in an inhibition of cytosolic calcium mobilization, but increased cytosolic calcium mobilization with saponin fraction.

  • PDF