• Title/Summary/Keyword: Isfahan%2C Iran

Search Result 8, Processing Time 0.024 seconds

Genetic Diversity of Echinococcus granulosus in Center of Iran

  • Pestechian, Nader;Safa, Ahmad Hosseini;Tajedini, Mohammadhasan;Rostami-Nejad, Mohammad;Mousavi, Mohammad;Yousofi, Hosseinali;Javanmard, Shaghayegh Haghjooy
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.4
    • /
    • pp.413-418
    • /
    • 2014
  • Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.

Lack of Significance of the BRCA2 Promoter Methylation Status in Different Genotypes of the MTHFR a1298c Polymorphism in Ovarian Cancer Cases in Iran

  • Darehdori, Ahmad Shabanizadeh;Dastjerdi, Mehdi Nikbakht;Dahim, Hajar;Slahshoor, Mohammadreza;Babazadeh, Zahra;Taghavi, Mohammad Mohsen;Taghipour, Zahra;Gaafarineveh, Hamidreza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1833-1836
    • /
    • 2012
  • Objective: Promoter methylation, which can be regulated by MTHFR activity, is associated with silencing of genes. In this study we evaluated the methylation status (type) of the BRCA2 promoter in ovarian cancer patients carrying different genotypes of the MTHFR gene (A or C polymorphisms at position 1298). Methods: The methylation type of the BRCA2 promoter was evaluated using bisulfate-modified DNA in methylation-specific PCR and the MTHFRa1278c polymorphism was assessed by PCR-RFLP. Results: Analysis of the BRCA2 promoter methylation type of cases showed that 7 out of 60 cases (11.7%) were methylated while the remaining 53 (88.3%) were unmethylated. In methylated cases, one out of the 7 cases had a CC genotype and the remaining 6 methylated cases had an AC genotype. The AA genotype was absent. In unmethylated cases, 34, 18, and one out of these had AC, AA and CC genotype, respectively. Conclusion: There was no significant relationship between the methylation types of the BRCA2 promoter in different genotypes of MTHFRa1298c polymorphism in ovarian cancer; p=0.255. There was no significant relation between the methylation types of the BRCA2 promoter in different genotypes of the MTHFRa1298c polymorphism in ovarian cancer.

Genetics of Hearing Loss in North Iran Population: An Update of Spectrum and Frequency of GJB2 Mutations

  • Koohiyan, Mahbobeh;Azadegan-Dehkordi, Fatemeh;Koohian, Farideh;Hashemzadeh-Chaleshtori, Morteza
    • Journal of Audiology & Otology
    • /
    • v.23 no.4
    • /
    • pp.175-180
    • /
    • 2019
  • Diagnosis of pre-lingual hearing loss (HL) is difficult owing to the high number of genes responsible. The most frequent cause of HL is DFNB1 due to mutations in the GJB2 gene. It represents up to 40% of HL cases in some populations. In Iran, it has previously been shown that DFNB1 accounts for 16-18% of cases but varies among different ethnic groups. Here, we reviewed results from our three previous publications and data from other published mutation reports to provide a comprehensive collection of data for GJB2 mutations and HL in northern Iran. In total, 903 unrelated families from six different provinces, viz., Gilan, Mazandaran, Golestan, Ghazvin, Semnan, and Tehran, were included and analyzed for the type and prevalence of GJB2 mutations. A total of 23 different genetic variants were detected from which 18 GJB2 mutations were identified. GJB2 mutations were 20.7% in the studied northern provinces, which was significantly higher than that reported in southern populations of Iran. Moreover, a gradient in the frequency of GJB2 mutations from north to south Iran was observed. c.35delG was the most common mutation, accounting for 58.4% of the cases studied. This study suggests that c.35delG mutation in GJB2 is the most important cause of HL in northern Iran.

Genetics of Hearing Loss in North Iran Population: An Update of Spectrum and Frequency of GJB2 Mutations

  • Koohiyan, Mahbobeh;Azadegan-Dehkordi, Fatemeh;Koohian, Farideh;Hashemzadeh-Chaleshtori, Morteza
    • Korean Journal of Audiology
    • /
    • v.23 no.4
    • /
    • pp.175-180
    • /
    • 2019
  • Diagnosis of pre-lingual hearing loss (HL) is difficult owing to the high number of genes responsible. The most frequent cause of HL is DFNB1 due to mutations in the GJB2 gene. It represents up to 40% of HL cases in some populations. In Iran, it has previously been shown that DFNB1 accounts for 16-18% of cases but varies among different ethnic groups. Here, we reviewed results from our three previous publications and data from other published mutation reports to provide a comprehensive collection of data for GJB2 mutations and HL in northern Iran. In total, 903 unrelated families from six different provinces, viz., Gilan, Mazandaran, Golestan, Ghazvin, Semnan, and Tehran, were included and analyzed for the type and prevalence of GJB2 mutations. A total of 23 different genetic variants were detected from which 18 GJB2 mutations were identified. GJB2 mutations were 20.7% in the studied northern provinces, which was significantly higher than that reported in southern populations of Iran. Moreover, a gradient in the frequency of GJB2 mutations from north to south Iran was observed. c.35delG was the most common mutation, accounting for 58.4% of the cases studied. This study suggests that c.35delG mutation in GJB2 is the most important cause of HL in northern Iran.

Distribution Frequency of Pathogenic Bacteria Isolated from Cutaneus Leishmaniasis Lesions

  • Ziaei, Hengameh;Sadeghian, Giti;Hejazi, SH
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.191-193
    • /
    • 2008
  • Cutaneous leishmaniasis (CL) is a parasitic disease characterized by single or multiple ulcerations. Secondary bacterial infections are one of the complications that can increase the tissue destruction and the resulting scar. To better determine the incidence of real secondary bacterial infections in CL, we designed the current study. This was a cross-sectional study performed in Skin Diseases and Leishmaniasis Research Centre, Isfahan, Iran. A total of 1,255 patients with confirmed CL enrolled in the study. Sterile swaps were achieved for ulcer exudates and scraping was used for non-ulcerated lesions. All samples were transferred to tryptic soy broth medium. After 24 hr of incubation at $37^{\circ}C$ they were transferred to eosin methylene blue agar (EMB) and blood agar. Laboratory tests were used to determine the species of bacteria. Among 1,255 confirmed CL patients, 274 (21.8%) had positive cultures for secondary bacterial infections. The bacteria isolated from the lesions were Staphylococcus aureus in 190 cases (69.3%), coagulase negative Staphylococcus in 63 cases (23.0%), E. coli in 10 cases (3.6%), Proteus sp. in 6 cases (2.2%), and Klebsiella sp. in 5 cases (1.9%). The results show that the overall incidence of secondary bacterial infections in the lesions of CL was 21.8%, considerably high. The incidence of secondary bacterial infections was significantly higher in ulcerated lesions compared with non-ulcerated lesions.

Mutations in GJB2 as Major Causes of Autosomal Recessive Non-Syndromic Hearing Loss: First Report of c.299-300delAT Mutation in Kurdish Population of Iran

  • Azadegan-Dehkordi, Fatemeh;Bahrami, Tayyebe;Shirzad, Maryam;Karbasi, Gelareh;Yazdanpanahi, Nasrin;Farrokhi, Effat;Koohiyan, Mahbobeh;Tabatabaiefar, Mohammad Amin;Hashemzadeh-Chaleshtori, Morteza
    • Journal of Audiology & Otology
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Background and Objectives: Autosomal recessive non-syndromic hearing loss (ARNSHL) with genetic origin is common (1/2000 births). ARNSHL can be associated with mutations in gap junction protein beta 2 (GJB2). To this end, this cohort investigation aimed to find the contribution of GJB2 gene mutations with the genotype-phenotype correlations in 45 ARNSHL cases in the Kurdish population. Subjects and Methods: Genomic DNA was extracted from a total of 45 ARNSHL families. The linkage analysis with 3 short tandem repeat markers linked to GJB2 was performed on 45 ARNSHL families. Only 9 of these families were linked to the DFNB1 locus. All the 45 families who took part were sequenced for confirmation linkage analysis (to perform a large project). Results: A total of three different mutations were determined. Two of which [c.35delG and c.-23+1G>A (IVS1+1G>A)] were previously reported but (c.299-300delAT) mutation was novel in the Kurdish population. The homozygous pathogenic mutations of GJB2 gene was observed in nine out of the 45 families (20%), also heterozygous genotype (c.35delG/N)+(c.-23+1G>A/c.-23+1G>A) were observed in 4/45 families (8.8%). The degree of hearing loss (HL) in patients with other mutations was less severe than patients with c.35delG homozygous mutation (p<0.001). Conclusions: Our data suggest that GJB2 mutations constitute 20% of the etiology of ARNSHL in Iran; moreover, the c.35delG mutation is the most common HL cause in the Kurdish population. Therefore, these mutations should be included in the molecular testing of HL in this population.

Mutations in GJB2 as Major Causes of Autosomal Recessive Non-Syndromic Hearing Loss: First Report of c.299-300delAT Mutation in Kurdish Population of Iran

  • Azadegan-Dehkordi, Fatemeh;Bahrami, Tayyebe;Shirzad, Maryam;Karbasi, Gelareh;Yazdanpanahi, Nasrin;Farrokhi, Effat;Koohiyan, Mahbobeh;Tabatabaiefar, Mohammad Amin;Hashemzadeh-Chaleshtori, Morteza
    • Korean Journal of Audiology
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Background and Objectives: Autosomal recessive non-syndromic hearing loss (ARNSHL) with genetic origin is common (1/2000 births). ARNSHL can be associated with mutations in gap junction protein beta 2 (GJB2). To this end, this cohort investigation aimed to find the contribution of GJB2 gene mutations with the genotype-phenotype correlations in 45 ARNSHL cases in the Kurdish population. Subjects and Methods: Genomic DNA was extracted from a total of 45 ARNSHL families. The linkage analysis with 3 short tandem repeat markers linked to GJB2 was performed on 45 ARNSHL families. Only 9 of these families were linked to the DFNB1 locus. All the 45 families who took part were sequenced for confirmation linkage analysis (to perform a large project). Results: A total of three different mutations were determined. Two of which [c.35delG and c.-23+1G>A (IVS1+1G>A)] were previously reported but (c.299-300delAT) mutation was novel in the Kurdish population. The homozygous pathogenic mutations of GJB2 gene was observed in nine out of the 45 families (20%), also heterozygous genotype (c.35delG/N)+(c.-23+1G>A/c.-23+1G>A) were observed in 4/45 families (8.8%). The degree of hearing loss (HL) in patients with other mutations was less severe than patients with c.35delG homozygous mutation (p<0.001). Conclusions: Our data suggest that GJB2 mutations constitute 20% of the etiology of ARNSHL in Iran; moreover, the c.35delG mutation is the most common HL cause in the Kurdish population. Therefore, these mutations should be included in the molecular testing of HL in this population.

Two novel mutations in ALDH18A1 and SPG11 genes found by whole-exome sequencing in spastic paraplegia disease patients in Iran

  • Komachali, Sajad Rafiee;Siahpoosh, Zakieh;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.30.1-30.9
    • /
    • 2022
  • Hereditary spastic paraplegia is a not common inherited neurological disorder with heterogeneous clinical expressions. ALDH18A1 (located on 10q24.1) gene-related spastic paraplegias (SPG9A and SPG9B) are rare metabolic disorders caused by dominant and recessive mutations that have been found recently. Autosomal recessive hereditary spastic paraplegia is a common and clinical type of familial spastic paraplegia linked to the SPG11 locus (locates on 15q21.1). There are different symptoms of spastic paraplegia, such as muscle atrophy, moderate mental retardation, short stature, balance problem, and lower limb weakness. Our first proband involves a 45 years old man and our second proband involves a 20 years old woman both are affected by spastic paraplegia disease. Genomic DNA was extracted from the peripheral blood of the patients, their parents, and their siblings using a filter-based methodology and quantified and used for molecular analysis and sequencing. Sequencing libraries were generated using Agilent SureSelect Human All ExonV7 kit, and the qualified libraries are fed into NovaSeq 6000 Illumina sequencers. Sanger sequencing was performed by an ABI prism 3730 sequencer. Here, for the first time, we report two cases, the first one which contains likely pathogenic NM_002860: c.475C>T: p.R159X mutation of the ALDH18A1 and the second one has likely pathogenic NM_001160227.2: c.5454dupA: p.Glu1819Argfs Ter11 mutation of the SPG11 gene and also was identified by the whole-exome sequencing and confirmed by Sanger sequencing. Our aim with this study was to confirm that these two novel variants are direct causes of spastic paraplegia.