• Title/Summary/Keyword: Isolated porcine cerebral artery

Search Result 2, Processing Time 0.014 seconds

Contractile Effects of Hemoglobin-Free Human Cerebrospinal Fluid on Isolated Porcine Cerebral Arteries

  • Baik, Yung-Hong;Kang, Seon-Young;Kook, Hyun;Chyung, Sang-Keun;Kook, Young-Johng;Kang, Sam-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.193-199
    • /
    • 1998
  • To elucidate the mechanism involved in the cerebral vascular spasm following subarachnoid hemorrhage (SAH), the effects of the cerebrospinal fluid (CSF) obtained from the SAH patients on the resting tension and its influence on the contractile responses to various vasoactive agents and to hypoxia were investigated in isolated porcine cerebral arteries. All the CSFs containing hemoglobin (Hb) produced contraction and some Hb-free CSFs also elicited contraction. When the Hb-free CSF was separated by microfilter, the filtrate of <30,000 MW did not produce contraction, while the fraction above 30,000 MW elicited more marked contractile responses than the unfractionated CSF. The CSF contraction was significantly attenuated in the presence of indomethacin or nimodipine, whereas the contractions induced by KCl, prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), or endothelin-1 (ET-1) were not affected by the CSF pretreatment. However, the contractile responses induced by 5-hydroxytryptamine (5-HT) and phenylephrine (PE) were markedly potentiated by the pretreatment. Hypoxia-induced vasoconstriction was significantly potentiated by the pretreatment with either unfractionated CSF or the CSF fraction of above 30,000 MW. These results suggest that unknown vasocontractile substance(s) exists in the Hb-free CSF and that the substance, with its MW above 30,000, is activated by hypoxia and acts synergistically with 5-HT and PE, and that extracellular calcium influx and cyclooxygenase are also involved in the cerebral vasoconstrictory effect of Hb-free CSF.

  • PDF

Study on Mechanical Responses Induced by Hypoxia in Porcine Isolated Cerebral Artery (돼지 적출뇌혈관의 저산소 유발 수축반응에 관하여)

  • Kim, Yoong
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.203-212
    • /
    • 1993
  • This study was designed to observe hypoxia-induced mechanical responses of porcine cerebral artery and to clarify their possible mechanisms. Hypoxia produced a transient vasoconstriction, recovering to the basal tension within 10 min and subsequent reoxygenation produced a biphasic (relaxalion-contraction) response in rings with endothelium under resting tension. Hypoxia produced a further contraction in rings precontracted with KCl or $PGF_{2{\alpha}}$, and following reoxygenation caused only sustained relaxation. Removal of the endothelium and pretreatment with nimodipine or indomethacin markedly attenuated the hypoxia- and reoxygenation-induced contractions. The KCl-induced contraction was not affected in hypoxic state, but contractions induced by $PGF_{2{\alpha}}$ or endothelin (ET) were inhibited in the hypoxia, the latter being more sensitive to the hypoxia. Upon reoxygenation, the attenuated contraction rapidly recovered to the original tension. Both hypoxia and reoxygenation significantly increased cyclic GMP content in the intact preparations, but not in the endothelium-removed ones. Acetylcholine (ACh) produced concentration-dependent relaxations in the intact endothelial rings precontracted with $PGF_{2{\alpha}}$ or endothelin, and the ACh-induced relaxation was inhibited by removal of endothelium and by hypoxia. ACh also increased cyclic GMP content in tissues pretreated with $PGF_{2{\alpha}}$ and the increase of cyclic GMP was abolished in hypoxic state. These results suggest that hypoxia- and reoxygenation-induced contractions are dependent on endothelium and extracellular calcium, and related to the release of prostaglandin-like substance(s).

  • PDF