• Title/Summary/Keyword: Jet velocity

Search Result 832, Processing Time 0.026 seconds

Characteristics of Thickness and Velocity of the Liquid Sheet Formed by Two Impinging Jets Considering Jet Velocity Profile (충돌 제트 속도 분포를 고려한 액막의 두께와 속도 특성)

  • Choo, Y.J.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • In this study, the effect of jet velocity profile on the thickness and velocity of the liquid sheet formed by two impinging low speed jets was investigated. To predict the distribution of thickness and velocity of liquid sheet theoretically, the jet velocity profile which was measured experimentally was adopted in addition to the constant jet velocity as well as Poiseuille's parabolic profile. For three cases, the distribution of thickness and velocity of liquid sheet was analytically predicted by solving conservation equations including stagnation point. The predicted results were compared with previous experimental results. The jet velocity profile definitely affected the resulting characteristics of liquid sheet. The distribution of thickness and velocity of liquid sheet was more close to the measured results compared with that which was predicted by the assumption of constant jet velocity.

  • PDF

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

Numerical Study on the Effect of Coflow Jet Velocity on Lifted Flame in Propane Jet (동축류 속도에 따른 프로판 제트의 부상화염 특성에 관한 수치해석적 연구)

  • Doh, Jae-Il;Kim, Kil-Nam;Chun, Kang-Woo;Kim, Jun-Hong;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.215-220
    • /
    • 2005
  • When the fuel jet velocity is smaller than coflow velocity, the trend of decreasing liftoff height of highly diluted propane lifted flame with coflow velocity is observed experimentally. To investigate the mechanism of decreasing liftoff height with coflow velocity, lifted flames in propane jet has been studied numerically. Using one-step overall reaction mechanism the liftoff heights have been calculated for four cases of coflow velocity. The simulation agrees qualitatively with experimental observation that the liftoff height decreases with coflow velocity. As coflow velocity increases, the streamlines between nozzle and lifted flame diverge in radial direction due to the difference of momentum between coflow jet and fuel jet such that the local flow velocity ahead of lifted flame base decreases resulting in decrease of the liftoff height with coflow velocity.

  • PDF

Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan (제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향)

  • 최충현;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

Analysis of Velocity Structure of Round Wall Jet (원형바닥젵의 유속구조 해석)

  • Kim, Dae-Geun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.467-475
    • /
    • 1997
  • In this study, breakwater model which has several outlet pipes to discharge heated water is settled in the experimental open channel and velocity distribution of wall jet is measured. Numerical simulation of velocity structure of wall jet using 3-dimensional computer model. Fluent model, is also carried out. The calculated results are verified with the experimental results and the flow characteristics of wall jet are investigated. The length of zone of flow establishment of wall jet is shorter than that of free jet, and the diminution rate of jet centerline longitudinal velocity is larger than that of free jet. Characteristics of buoyant jet and non-buoyant simple jet simulated by Fluent model are compared. Near the outlet pipe, in the region where x/lQ is over 15, this is reversed. Comparison of vertical distribution of longitudinal velocity shows that positive velocity of non-buoyant jet is bigger than that of buoyant jet in the bottom layer and in the upper layer, negative velocity of non-buoyant jet is bigger too. Flow separation in free surface of the buoyant jet occurs in smaller distances from the outlet than the non-buoyant jet. Buoyant jet expands faster than the non-buoyant jet in vertical direction.

  • PDF

A study on the Velocity Distribution of the Liquid Sheet Formed by Two Impinging Jets at Low Velocities (저속 충돌제트에 의해 형성되는 액막의 속도 분포에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • In this research, the velocity distribution of the liquid sheet formed by two impinging jets at low velocities are measured using LDV. The spatial distribution of the sheet velocity as well as the effects of impinging anlge and jet velocity on the sheet velocity are examined. The sheet velocity is highest along the sheet axis and it decreases with the increase of the azimuthal angle. With the increase of the impinging angle, the average sheet velocity is decreased due to the increased impact momentum. The average sheet velocity is proportional to the jet velocity but it is always higher than the jet velocity. This result is against the fact that the sheet velocity can be assumed to be equal to the jet velocity in the previous researches.

  • PDF

A study on the Velocity Distribution of the Liquid Sheet Formed by Two Impinging Jets at Low Velocities (저속 충돌제트에 의해 형성되는 액막의 속도 분포에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.728-733
    • /
    • 2000
  • In this research, the velocity distribution of the liquid sheet formed by two impinging jets at low velocities are measured using LDV. The spatial distribution of the sheet velocity as well as the effects of impinging angle and jet velocity are examined. The sheet velocity is the highest along the sheet axis and it decreases with the increase of the azimuthal angle. With the increase of the impinging angle, however, the difference of sheet velocity on the liquid sheet is decreased. The average sheet velocity is proportional to the jet velocity but it is always higher than the jet velocity as against the fact that the sheet velocity can be assumed to be equal to the jet velocity in the previous researches.

  • PDF

Characteristics of Laminar Lifted Flames in Coflow Jet with Various Coflow Velocities (동축류 제트에서 동축류 속도에 따른 층류 부상화염의 특성 연구)

  • Lee, S.J.;Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.21-26
    • /
    • 2004
  • Characteristics of laminar lifted names in coflow jet with various coflow velocities have been studied experimently. USlI1g the fuel nozzle with d=0.254 for the pure propane, liftoff heights are fitted by using power equation with jet velocity. As coflow velocity increases up to 60 cm/s powers of fitting equation steeply decrease. From the result of numerical analysis using the FLUENT, the stoichiometry contour and the axial velocity nondimensionalized by initial jet velocity along the stoichiometry contour are changed with variations of coflow velocities, The change of axial velocity along stoichiometric contour is more sensitive than that of stoichiometric contour, For this reason, powers of fitting equation for liftoff height with jet velocity decreases with the increase of coflow velocity. Using the fuel nozzle with d=4,35 mm for the highly diluted propane by nitrogen, the liftoff height increases with the increase of coflow velocity when coflow velocity is less than the maximum value of initial jet velocity. But when coflow velocity is faster than that, the liftoff height decreases with the increase of coflow velocity.

  • PDF

Combustion Characteristicsof Plasma JetIgnition for Different Swirl Velocity in a Constant Volume Vessel (정적 연소기내의 스월 속도 변화에 따른 플라즈마 제트 점화의 연소특성)

  • 김문헌;박정서;이주환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.75-83
    • /
    • 2001
  • This paper presents the evaluation of combustion characteristics of sing-hole plasma jet ignitions in comparison with conventional spark ignition for variable of swirl velocity. Plasma jet plugs are three types according to ejecting directions : center of chamber, positive and negative swirl flow direction. Experiments are carried out for equivalent ratio 1.0 of LPG-air mixture in a constant volume cylindrical vessel. Not only the flame propagation is photographed at intervals, but the pressure variation in the combustion chamber is also recorded throughout the entire combustion process. The results show that the plasma jet ignitions and spark ignition enhance the overall combustion rate by increasing the swirl velocity. The dependence of the combustion rate swirl velocity leade to the conclusion that the placma jet plug, which ejects plasma jet to the cwnter of combustion chamber is the most desirable ignitor than other plugs.

  • PDF

NUMERICAL ANALYSIS FOR 2-D FREE JET FLOW BY SMAC SCHEME (SMAC법에 의한 2차원 자유분류의 수치해석)

  • Jung, S.H.;An, Y.J.;Shin, B.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.298-302
    • /
    • 2009
  • Numerical analysis of two dimensional incompressible laminar free jet flow was carried out by using finite difference SMAC scheme. Flow characteristics of free jet flow such as jet width, similarity of jet velocity and hypothetical origin were investigated for different Reynolds numbers of Re=30 and 100. The reliability of predictions were confirmed by comparison with exact solution. Non-dimensional velocity distribution showed similarity of jet flow velocity after initial region. In the region of laminar flow, the location of hypothetical origin becomes more distant with Reynolds number.

  • PDF