• Title/Summary/Keyword: Justification problem

Search Result 93, Processing Time 0.022 seconds

Effects of Mathematical Justification on Problem Solving and Communication (수학적 정당화가 문제 해결과 의사소통에 미치는 영향)

  • Jeong, In Su
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.267-283
    • /
    • 2013
  • Mathematical justification is the process through which one's claim is validated to be true based on proper and trustworthy data. But it serves as a catalyst to facilitate mathematical discussions and communicative interactions among students in mathematics classrooms. This study is designed to investigate the effects of mathematical justification on students' problem-solving and communicative processes occurred in a mathematics classroom. In order to fulfill the purpose of this study, mathematical problem-solving classes were conducted. Mathematical justification processes and communicative interactions recorded in problem understanding activity, individual student inquiry, small and whole group discussions are analyzed. Based on the analysis outcomes, the students who participated in mathematical justification activities are more likely to find out various problem-solving strategies, to develop efficient communicative skills, and to use effective representations. In addition, mathematical justification can be used as an evaluation method to test a student's mathematical understanding as well as a teaching method to help develop constructive social interactions and positive classroom atmosphere among students. The results of this study would contribute to strengthening a body of research studying the importance of teaching students mathematical justification in mathematics classrooms.

Intersubjective Justification and Objective Justification (상호주관적 정당화와 객관적 정당화)

  • Lee, Byeongdeok
    • Korean Journal of Logic
    • /
    • v.22 no.1
    • /
    • pp.125-150
    • /
    • 2019
  • A coherence theory is adequate as a theory of justification only when justification as conceived by the theory is truth-conducive. But it is not clear how coherentist justification is truth-conducive. This is the alleged truth-conduciveness problem of coherentism. In my 2017 paper, I argued that a certain version of the coherence theory, namely a Sellarsian coherence theory combined with the deflationary conception of truth, can cope with this problem. Against this claim, Kiyong Suk argues in his recent paper that my proposed solution fails on the grounds that there is no practical way of distinguishing between intersubjective justification and objective justification. The purpose of this paper is to clarify my view by way of explaining why Suk's criticism is not correct. In particular, I argue that his criticism is based on a wrong assumption, namely that for one to be objectively justified in believing something, one's justification must be qualitatively transformed into the status of having objective justification from the status of having intersubjective justification.

An Analysis of Problem-solving Ability and Mathematical Justification of Mathematical Essay Problems of 5th Grade Students in Elementary School (수리논술형 문제에 대한 초등학교 5학년 학생들의 문제해결력과 수학적 정당화 과정 분석)

  • Kim, Young-Sook;Pang, Jeong-Suk
    • The Mathematical Education
    • /
    • v.48 no.2
    • /
    • pp.149-167
    • /
    • 2009
  • This study was aimed to examine problem-solving ability of fifth graders on two types of mathematical essay problems, and to analyze the process of mathematical justification in solving the essay problems. For this purpose, a total of 14 mathematical essay problems were developed, in which half of the items were single tasks and the other half were data-provided tasks. Sixteen students with higher academic achievements in mathematics and the Korean language were chosen, and were given to solve the mathematical essay problems individually. They then were asked to justify their solution methods in groups of 4 and to reach a consensus through negotiation among group members. Students were good at understanding the given single tasks but they often revealed lack of logical thinking and representation. They also tended to use everyday language rather than mathematical language in explaining their solution processes. Some students experienced difficulty in understanding the meaning of data in the essay problems. With regard to mathematical justification, students employed more internal justification by experience or mathematical logic than external justification by authority. Given this, this paper includes implications for teachers on how they need to teach mathematics in order to foster students' logical thinking and communication.

  • PDF

Mathematically Gifted Students' Justification Patterns and Mathematical Representation on a Task of Spatial Geometry (수학영재들의 아르키메데스 다면체 탐구 과정 - 정당화 과정과 표현 과정을 중심으로 -)

  • Lee, Kyong-Hwa;Choi, Nam-Kwang;Song, Sang-Hun
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.487-506
    • /
    • 2007
  • The aims of this study is figure out the characteristics of justification patterns and mathematical representation which are derived from 14 mathematically gifted middle school students in the process of solving the spatial tasks on Archimedean solid. This study shows that mathematically gifted students apply different types of justification such as empirical, or deductive justification and partial or whole justification. It would be necessary to pay attention to the value of informal justification, by comparing the response of student who understood the entire transformation process and provided a reasonable explanation considering all component factors although presenting informal justification and that of student who showed formalization process based on partial analysis. Visual representation plays an valuable role in finding out the Idea of solving the problem and grasping the entire structure of the problem. We found that gifted students tried to create elaborated symbols by consolidating mathematical concepts into symbolic re-presentations and modifying them while gradually developing symbolic representations. This study on justification patterns and mathematical representation of mathematically gifted students dealing with spatial geometry tasks provided an opportunity for understanding their the characteristics of spacial geometrical thinking and expending their thinking.

  • PDF

An Establishment and Extension of Diagnostic Concepts in Traditional Oriental Medicine; On chi shue yin yang (기혈음양의 허증에 대한 한의 진단 모델의 성립과 확장)

  • Park Kyung Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1359-1367
    • /
    • 2003
  • Through the historical and logical methodology, The historical development and extension of diagnostic concepts as chi(氣), shue(血), yin(陰), yang(陽) is analyzed. This study suggests the analystic methodology of diagnostic concepts, introduce the justification problem of oriental medical diagnosis, and is concluded with the problem of diagnostic concepts which should be modified and.

Mathematical Discovery and Justification through Modeling Activity in Spreadsheet Environment (스프레드시트 환경에서 모델링 활동을 통한 수학적 발견과 정당화)

  • Son, Hong-Chan;Lew, Hee-Chan
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.427-444
    • /
    • 2005
  • The Purpose of this study is to explore he mathematical discovery and justification of six 10th grade students through mathematical modeling activities in spreadsheet environments. The students investigated problem situations with a spreadsheet, which seem to be difficult to solve in paper and pencil environment. In spreadsheet environments, it is easy for students to form a data table and graph by inputting and copying spreadsheet formulas, and to make change specific variable by making a scroll bar. In this study those functions of spreadsheet play an important role in discovery and justification of mathematical rules which underlie in the problem situations. In modeling activities, the students could solve the problem situations and find the mathematical rules by using those functions of spreadsheets. They used two types of trial and error strategies to find the rules. The first type was to insert rows between two adjacent rows and the second was to make scroll bars connecting specific variable and change the variable by moving he scroll bars. The spreadsheet environments also help students to justify their findings deductively and convince them that their findings are true by checking various cases of the Problem situations.

  • PDF

A Study on the Types of Mathematical Justification Shown in Elementary School Students in Number and Operations, and Geometry (수와 연산.도형 영역에서 초등 3학년 학생들의 수학적 정당화 유형에 관한 연구)

  • Seo, Ji-Su;Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.85-108
    • /
    • 2012
  • The comprehensive implication in justification activity that includes the proof in the elementary school level where the logical and formative verification is hard to come has to be instructed. Therefore, this study has set the following issues. First, what is the mathematical justification type shown in the Number and Operations, and Geometry? Second, what are the errors shown by students in the justification process? In order to solve these research issues, the test was implemented on 62 third grade elementary school students in D City and analyzed the mathematical justification type. The research result could be summarized as follows. First, in solving the justification type test for the number and operations, students evenly used the empirical justification type and the analytical justification type. Second, in the geometry, the ratio of the empirical justification was shown to be higher than the analytical justification, and it had a difference from the number and operations that evenly disclosed the ratio of the empirical justification and the analytical justification. And third, as a result of analyzing the errors of students occurring during the justification process, it was shown to show in the order of the error of omitting the problem solving process, error of concept and principle, error in understanding the questions, and technical error. Therefore, it is prudent to provide substantial justification experiences to students. And, since it is difficult to correct the erroneous concept and mistaken principle once it is accepted as familiar content that it is required to find out the principle accepted in error or mistake and re-instruct to correct it.

A Literature Survey on Economic Justification of Flexible Manufacturing Systems (유연생산(柔軟生産) 시스템 (F.M.S.: Flexible Manufacturing Systems)의 경제성(經濟性) 평가(評價)에 대한 문헌(文獻) 고찰(考察))

  • Kim, Seong-In;Kim, Seung-Gwon;Gang, Seok-Hyeon;Park, Tae-Hyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.117-128
    • /
    • 1987
  • A major problem in the adoption of advanced manufacturing systems such as F.M.S. (Flexible Manufacturing Systems) is the prerequisite economic justification process because of high investment needed for the acquisition and installation of F.M.S. While some of the benefits expected are readily quantifiable, others are very difficult or even impossible, using conventional method. Thus the investment in F.M.S. should be considered as a strategic decision rather than a tactical decision which concerns with only financial implications. In this paper we review papers on major justification techniques developed during thelast decade and identify the benefits of F.M.S. and describe the considerations in the justification of F.M.S. Also, we deal with the current and future research directions in justifying F.M.S.

  • PDF

An expert system approach for process planning of worsted spun yarns (전문가 시스템을 이용한 소모사의 공정계획)

  • 권영일;송서일
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.653-659
    • /
    • 1994
  • Human experts have the various own knowledges to be applied in specialized domains. The fact that knowledge itself becomes more critical in the context of textile knowledge with rapid development of new fibers, automated equipments, processes and applications. Diversity of worsted spun yarns, lack of human expertise, and inconsistency among manually generated process plans in consequency of adjustment machine parameters owing to change up raw materials frequently increase the necessity of developing computer aided process planning(CAPP) systems for spinning process. Expert systems offer one of techniques to develop CAPP systems which would behave in a knowledgeable manner. Expert systems are the problem-solving computer program that can reach a level of performance comparable to that of a human expert in some specialized problem domain. This paper is described as job justification module. The job justification module performs to consult with users on which worsted spun yarn manufacturing process planning under the various factors, e.g., raw materials, machine parameters and required yarn counts. Also, the developed module informs the various knowledges relevant process planning. The job justification module offers the control parameters at each process and includes the various standard process plans as database. These knowledges are generated by facts and rules within rule bases.