• Title/Summary/Keyword: Kirchhoff type problems

Search Result 7, Processing Time 0.019 seconds

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET BOUNDARY CONDITION

  • Chaharlang, Moloud Makvand;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.155-167
    • /
    • 2019
  • In this article we are concerned with some non-local problems of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev spaces. A result of the existence of infinitely many solutions is established using variational methods and Ricceri's critical points principle modified by Bonanno.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.

BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM

  • Tahri, Kamel;Yazid, Fares
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.247-256
    • /
    • 2021
  • Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: $$(\mathcal{P}_{\lambda})\;\{\begin{array}{lll}{\Delta}^2u-(a{\int}_{\Omega}{\mid}{\nabla}u{\mid}^2dx+b){\Delta}u+cu=f(x){\mid}u{\mid}^{-{\gamma}}-{\lambda}{\mid}u{\mid}^{p-2}u&&\text{ in }{\Omega},\\{\Delta}u=u=0&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω is a smooth bounded domain of ℝn (n ≥ 5), ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u and 0 < γ < 1, λ > 0, 0 < p ≤ 2# and a, b, c are three positive constants with a + b > 0 and f belongs to a given Lebesgue space.

INFINITELY MANY SOLUTIONS FOR (p(x), q(x))-LAPLACIAN-LIKE SYSTEMS

  • Heidari, Samira;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Variational method has played an important role in solving problems of uniqueness and existence of the nonlinear works as well as analysis. It will also be extremely useful for researchers in all branches of natural sciences and engineers working with non-linear equations economy, optimization, game theory and medicine. Recently, the existence of infinitely many weak solutions for some non-local problems of Kirchhoff type with Dirichlet boundary condition are studied [14]. Here, a suitable method is presented to treat the elliptic partial derivative equations, especially (p(x), q(x))-Laplacian-like systems. This kind of equations are used in the study of fluid flow, diffusive transport akin to diffusion, rheology, probability, electrical networks, etc. Here, the existence of infinitely many weak solutions for some boundary value problems involving the (p(x), q(x))-Laplacian-like operators is proved. The method is based on variational methods and critical point theory.

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Hydroelastic Responses of Floating Structure by Modeling Dimensions (부유구조물의 모델링 차원에 따른 유탄성 응답)

  • Hong, Sanghyun;Hwang, Woongik;Lee, Jong Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • In this study, FE-BE direct coupling methods of 1D and 2D problems are considered for the pontoon-type floating structure and the difference of the modeling dimensions is investigated for the hydroelastic response. The modeling dimensions are defined as the 1D problem consisting 1D beam-2D fluid coupling and the 2D problem consisting 2D plate-3D fluid coupling with zero-draft assumption. For case studies, hydroelastic responses of the 1D Problem are compared to those of the 2D Problem for a wide range of aspect ratio and regular waves. It is shown that the effects of the elastic behavior are increased by decreasing the incident wavelength, whereas the effects of the rigid behavior are increased by increasing the incident wavelength. In 2D problem, the incident wave angle can be considered, and slightly more accurate results can be obtained, but the computational efficiency is lower. On the other hand, in 1D problem with plate-strip condition, the incident wave angle cannot be considered, but when the aspect ratio is large, the overall responses can be analyzed through a simplified model, and the computational efficiency can be improved.